原文服务方: 河南科学       
摘要:
将EMD(经验模式分解)方法应用到股票价格趋势的预测中,找出影响股票市场波动的关键因素,旨在提高预测的精确性。通过EMD方法将上证指数日收盘价数据分解为不同频率的数据段,重组为高频序列、低频序列和趋势序列,运用高阶自回归和GARCH模型对分解出来的各序列进行拟合和预测,避免各个分段预测过程中的误差累积,最后对预测数据重组,得到样本外数据的预测序列。结果表明,该模型具有较好的预测效果,能给投资者提供更为合理的股票投资意见,同时为趋势预测研究提供借鉴。
推荐文章
数据多维处理LSTM股票价格预测模型
长短期记忆网络
股价预测
组合模型
萤火虫算法
最小二乘支持向量机
基于情感分析和GAN的股票价格预测方法
股票价格预测
情感分析
卷积神经网络
生成对抗网络
基于分型布朗运动的股票价格趋势预测
布朗运动
分型布朗运动
蒙特卡洛模拟
正态性检验
股票价格
基于DMD-LSTM模型的股票价格时间序列预测研究
动态模态分解
长短期记忆神经网络
模态特征
板块联动效应
市场背景
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 EMD和GARCH模型应用于股票价格预测
来源期刊 河南科学 学科
关键词 股价预测 EMD GARCH模型 自回归模型
年,卷(期) 2013,(11) 所属期刊栏目 城市科学与管理科学
研究方向 页码范围 2029-2034
页数 6页 分类号 F832.48
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨建辉 华南理工大学工商管理学院 49 295 10.0 15.0
2 易慧琳 华南理工大学工商管理学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (84)
共引文献  (99)
参考文献  (13)
节点文献
引证文献  (3)
同被引文献  (3)
二级引证文献  (0)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(3)
  • 参考文献(0)
  • 二级参考文献(3)
1987(3)
  • 参考文献(0)
  • 二级参考文献(3)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(7)
  • 参考文献(1)
  • 二级参考文献(6)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(6)
  • 参考文献(1)
  • 二级参考文献(5)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(8)
  • 参考文献(1)
  • 二级参考文献(7)
2008(10)
  • 参考文献(2)
  • 二级参考文献(8)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(5)
  • 参考文献(5)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
股价预测
EMD
GARCH模型
自回归模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南科学
月刊
1004-3918
41-1084/N
大16开
1982-01-01
chi
出版文献量(篇)
7108
总下载数(次)
0
论文1v1指导