原文服务方: 中国机械工程       
摘要:
针对轴承故障的振动特征由于受到强振源的抑制作用而增加了故障分离与辨识难度的问题,建立了基于信源估计和频域反卷积的故障诊断方法。利用小波包分解将信号分离成多个子带信号,并和奇异值分解相结合,解决欠定条件下的信号源数估计问题;根据估计的源数,选取相应维数的观测信号,通过短时傅里叶变换、复数域独立分量分析、相关排序、短时傅里叶逆变换,完成频域反卷积的分析过程,实现故障特征的分离与提取。仿真信号和实验数据均验证了该方法在故障特征分离与微弱特征辨识中的有效性。
推荐文章
基于混合域特征集与加权KNN的滚动轴承故障诊断
混合域特征集
加权K-近邻分类器
滚动轴承
故障诊断
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
基于EMD与PCA分析的滚动轴承故障特征研究
滚动轴承
故障诊断
经验模态分解
主成分分析
基于LMD能量熵的滚动轴承故障特征提取
滚动轴承
局部均值分解
能量熵
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于信源估计和频域反卷积的滚动轴承故障特征分离与辨识
来源期刊 中国机械工程 学科
关键词 小波包分解 奇异值分解 短时傅里叶变换 复数域独立分量分析 频域反卷积
年,卷(期) 2017,(1) 所属期刊栏目 信息技术
研究方向 页码范围 45-50,51
页数 7页 分类号 TH16
字数 语种 中文
DOI 10.3969/j.issn.1004-132X.2017.01.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张建宇 北京工业大学先进制造技术北京市重点实验室 81 700 16.0 22.0
2 胥永刚 2 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (54)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (12)
二级引证文献  (3)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(4)
  • 参考文献(0)
  • 二级参考文献(4)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(5)
  • 参考文献(1)
  • 二级参考文献(4)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(2)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(4)
  • 引证文献(2)
  • 二级引证文献(2)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
小波包分解
奇异值分解
短时傅里叶变换
复数域独立分量分析
频域反卷积
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国机械工程
月刊
1004-132X
42-1294/TH
大16开
湖北省武汉市洪山区南李路湖北工业大学
1990-01-01
中文
出版文献量(篇)
13171
总下载数(次)
0
总被引数(次)
206238
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导