基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
数据流分类是数据挖掘领域的重要研究任务之一,已有的数据流分类算法大多是在有标记数据集上进行训练,而实际应用领域数据流中有标记的数据数量极少.为解决这一问题,可通过人工标注的方式获取标记数据,但人工标注昂贵且耗时.考虑到未标记数据的数量极大且隐含大量信息,因此在保证精度的前提下,为利用这些未标记数据的信息,本文提出了一种基于Tri-training的数据流集成分类算法.该算法采用滑动窗口机制将数据流分块,在前k块含有未标记数据和标记数据的数据集上使用Tri-training训练基分类器,通过迭代的加权投票方式不断更新分类器直到所有未标记数据都被打上标记,并利用k个Tri-training集成模型对第k+1块数据进行预测,丢弃分类错误率高的分类器并在当前数据块上重建新分类器从而更新当前模型.在10个UCI数据集上的实验结果表明:与经典算法相比,本文提出的算法在含80%未标记数据的数据流上的分类精度有显著提高.
推荐文章
基于改进Tri-training算法的中文问句分类
Tri-training算法
随机采样
问句分类
基于直觉模糊集的Tri-Training改进算法
Tri-Training算法
SOM算法
直觉模糊集
半监督
基于Tri-training直推式支持向量机算法
支持向量机
直推式学习
半监督学习
Tri-training算法
基于辅助学习与富信息策略的Tri-training算法
半监督学习
富信息策略
辅助学习策略
Tri-training
说话声识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于Tri-training的数据流集成分类算法
来源期刊 数据采集与处理 学科 工学
关键词 数据流分类 Tri-training 未标记数据 集成 加权投票
年,卷(期) 2017,(5) 所属期刊栏目
研究方向 页码范围 853-860
页数 8页 分类号 TP274+.3
字数 4796字 语种 中文
DOI 10.16337/j.1004-9037.2017.05.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡学钢 合肥工业大学计算机与信息学院数据挖掘与智能计算实验室 314 3156 27.0 39.0
2 李培培 合肥工业大学计算机与信息学院数据挖掘与智能计算实验室 24 142 6.0 11.0
3 马利伟 合肥工业大学计算机与信息学院数据挖掘与智能计算实验室 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (24)
二级引证文献  (2)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
数据流分类
Tri-training
未标记数据
集成
加权投票
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
总被引数(次)
25271
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导