基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对风电场的短期功率预测,提出了一种考虑风电机组运行条件的用于风电场短期功率预测的新方法.首先,利用风力发电机的监控和数据采集(SCADA)系统数据计算输出功率和运行条件之间的皮尔逊相关系数,验证了SCADA监测项目对风力发电机输出功率的具有相关性;其次,建立支持向量回归(SVR)模型来预测单个风力发电机的风力与气象、运行状态的关系,发现了考虑运行条件的模型的预测结果优于仅考虑气象信息的模型的预测结果;最后,考虑到不同空间位置的风力发电机组对风电场输出功率的贡献不同,建立了各风力发电机预测功率和风电场预测功率输出之间的回归模型.试验结果表明:所提出的风场回归模型的预测误差小于风力涡轮机所有预测功率的模型的预测误差,从而验证了该方法的有效性.
推荐文章
基于支持向量回归的设备故障趋势预测
支持向量回归
BP神经网络
灰色模型
灰色-AR模型
故障趋势预测
基于数学模型的大功率碟形激光焊支持向量回归熔宽预测
大功率碟形激光焊
支持向量回归
熔宽预测
卡尔曼滤波修正的风电场短期功率预测模型
卡尔曼滤波
神经网络
功率预测
风力发电
基于深度学习网络的风电场功率短期预测研究
风电场
数值天气预报
功率预测
深度学习网
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量回归的风电场短期功率预测
来源期刊 中南民族大学学报(自然科学版) 学科 工学
关键词 短期预测 监控与数据采集系统 支持向量回归 风力发电机
年,卷(期) 2017,(4) 所属期刊栏目 物理与电子信息科学
研究方向 页码范围 95-99
页数 5页 分类号 TM614
字数 4482字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林涛 河北工业大学控制科学与工程学院 65 273 10.0 12.0
5 秦冬阳 河北工业大学控制科学与工程学院 3 11 2.0 3.0
6 马同宽 河北工业大学控制科学与工程学院 3 11 2.0 3.0
7 董栅 河北工业大学控制科学与工程学院 3 11 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (86)
共引文献  (112)
参考文献  (10)
节点文献
引证文献  (2)
同被引文献  (25)
二级引证文献  (1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(14)
  • 参考文献(3)
  • 二级参考文献(11)
2012(9)
  • 参考文献(0)
  • 二级参考文献(9)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
短期预测
监控与数据采集系统
支持向量回归
风力发电机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中南民族大学学报(自然科学版)
季刊
1672-4321
42-1705/N
大16开
武汉市民院路5号
1982
chi
出版文献量(篇)
2596
总下载数(次)
4
总被引数(次)
11010
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导