基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
多词表达的识别错误会对很多自然语言处理任务造成不利影响.DE-Tri-Training半指导聚类算法在聚类初期使用有指导的标注信息,取得了较好的抽取结果.本文采用基于中心词扩展的初始聚类中心确定方法和基于有指导信息的一致性协同学习数据净化方法,提出了半指导策略抽取汉语多词表达,聚类算法的中后期也加入有指导的信息,使分类器能使用正确的标注信息进行训练.通过与DE-Tri-Training算法的对比实验,改进的DE-Tri-Training算法得到的汉语多词表达抽取结果优于原来的算法,验证了改进DE-Tri-Training算法的有效性.
推荐文章
基于改进Tri-training算法的中文问句分类
Tri-training算法
随机采样
问句分类
基于直觉模糊集的Tri-Training改进算法
Tri-Training算法
SOM算法
直觉模糊集
半监督
基于Tri-training直推式支持向量机算法
支持向量机
直推式学习
半监督学习
Tri-training算法
基于辅助学习与富信息策略的Tri-training算法
半监督学习
富信息策略
辅助学习策略
Tri-training
说话声识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进DE-Tri-Training算法的汉语多词表达抽取
来源期刊 数据采集与处理 学科 工学
关键词 多词表达 半指导 协同训练
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 141-148
页数 8页 分类号 TP391
字数 5410字 语种 中文
DOI 10.16337/j.1004-9037.2017.01.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谭红叶 山西大学计算机与信息技术学院 36 463 9.0 21.0
2 鲜学丰 苏州市职业大学计算机工程学院 13 70 4.0 8.0
3 钱海忠 金陵科技学院软件工程学院 8 23 3.0 4.0
4 梁颖红 金陵科技学院软件工程学院 4 13 2.0 3.0
5 黄丹丹 金陵科技学院软件工程学院 1 2 1.0 1.0
6 沈春泽 金陵科技学院软件工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (3)
参考文献  (4)
节点文献
引证文献  (2)
同被引文献  (11)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多词表达
半指导
协同训练
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导