基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
图像识别技术是人工智能的一个重要领域,传统的图像识别方法需要人工设计特征,而深度学习属于神经网络结构,它能够从大数据中自动学习特征,极大的提高了识别准确率以及效率.因此本文着重研究了基于深度学习的图像识别方法,并探讨了卷积神经网络以及深度信念网络的基本模型和原理.
推荐文章
基于深度学习的图像识别技术研究综述
图像识别
CNN
R-CNN
SPP-Net
FastR-CNN
基于深度学习的肺部肿瘤图像识别方法
样本扩充
迁移学习
深度学习
归一预处理
医学图像识别
基于深度学习的图像识别研究
深度学习
图像识别
机器学习
基于深度学习的图像识别算法研究
深度学习
图像识别算法
深度神经网络
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的图像识别研究
来源期刊 科技广场 学科 工学
关键词 图像识别 深度学习 卷积神经网络 深度信念网络
年,卷(期) 2017,(10) 所属期刊栏目 科技创新巡礼
研究方向 页码范围 178-180
页数 3页 分类号 TP391.41
字数 2336字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蒋娜 江西财经大学软件与通信工程学院 5 6 1.0 2.0
2 温昕 江西财经大学软件与通信工程学院 4 8 2.0 2.0
3 李玫洁 江西财经大学软件与通信工程学院 2 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (5)
同被引文献  (5)
二级引证文献  (5)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(5)
  • 引证文献(4)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
图像识别
深度学习
卷积神经网络
深度信念网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科技广场
月刊
1671-4792
36-1253/N
大16开
南昌市省府大院北二路53号
44-66
1988
chi
出版文献量(篇)
11613
总下载数(次)
26
总被引数(次)
31625
论文1v1指导