基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对投影孪生支持向量机(Projection Twin Support Vector Machine,PTSVM)在训练和求解过程中存在的问题,提出了一类改进的投影孪生支持向量机(Improved PTSVM),简称为IPTSVM.该文首先构造了改进的线性投影孪生支持向量机,然后利用核技巧轻松将其推广到了非线性形式.本文的主要贡献有:(1)提出了投影孪生支持向量机的新模型,克服了原始PTSVM在训练之前需要求解两个逆矩阵的问题;(2)继承了传统SVM(Support Vector Machine)的精髓,利用核技巧直接将线性IPTSVM推广到非线性形式;(3)引入了一个新的参数,可以调节模型的性能,提高了IPTSVM的分类精度.实验结果表明,与PTSVM算法相比较,IPTSVM不仅提高了分类精度,而且克服了PTSVM的一些不足.
推荐文章
基于几何算法的投影孪生支持向量机
模式分类
支持向量机
投影孪生支持向量机
计算几何
多项式光滑孪生支持向量回归机
孪生支持向量回归机
多项式
光滑
New ton-Armijo算法
一种改进的偏二叉树孪生支持向量机算法及其应用
偏二叉树
孪生支持向量机
混合分离性测度
故障识别
一种改进的投影孪生支持向量机
分类
投影孪生支持向量机
局部信息
加权均值
近邻图
二次规划
约束条件
时间复杂度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的投影孪生支持向量机
来源期刊 电子学报 学科 工学
关键词 支持向量机 非平行平面支持向量机 投影孪生支持向量机 模式分类
年,卷(期) 2017,(2) 所属期刊栏目 学术论文
研究方向 页码范围 408-416
页数 9页 分类号 TP391
字数 7114字 语种 中文
DOI 10.3969/j.issn.0372-2112.2017.02.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴小俊 江南大学物联网工程学院 170 1079 17.0 22.0
2 陈素根 江南大学物联网工程学院 32 101 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (14)
节点文献
引证文献  (13)
同被引文献  (29)
二级引证文献  (3)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(5)
  • 参考文献(5)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(6)
  • 引证文献(5)
  • 二级引证文献(1)
2019(6)
  • 引证文献(5)
  • 二级引证文献(1)
2020(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
非平行平面支持向量机
投影孪生支持向量机
模式分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导