基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于基本多目标人工蜂群算法存在着种群盲目搜索、算法开发能力有限等缺点,在利用人工蜂群算法求解多目标优化问题时,提出了一种改进的人工蜂群算法.通过在算法中引入自适应搜索机制和变异机制等操作,使得种群个体可以有针对性地进行更新,同时也大大提高了种群个体的多样性.最后利用几种多目标的测试函数对改进前后的多目标人工蜂群算法的性能进行测试,结果表明:改进后多目标人工蜂群算法具有良好的算法收敛性和均匀性.
推荐文章
一种改进的人工蜂群算法研究
人工蜂群算法
算法改进
数据分析
更新维度
领域搜索
仿真实验
一种人工蜂群算法改进方案
人工蜂群算法
跟随蜂
侦察蜂
邻域搜索
一种求解旅行商问题的改进人工蜂群算法
旅行商问题
人工蜂群算法
柯西变异算子
基于混合人工蜂群算法的多目标柔性作业车间调度问题研究
计算机应用
柔性作业车间调度
人工蜂群算法
多目标优化
禁忌搜索
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的多目标人工蜂群算法
来源期刊 南华大学学报(自然科学版) 学科 工学
关键词 人工蜂群算法 多目标优化问题 自适应搜索 变异操作
年,卷(期) 2017,(2) 所属期刊栏目 数理·计算机科学
研究方向 页码范围 56-61
页数 6页 分类号 TP301.6
字数 3622字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郜振华 安徽工业大学管理科学与工程学院 27 275 7.0 16.0
2 张洪亮 安徽工业大学管理科学与工程学院 30 176 7.0 12.0
3 陈伟栋 安徽工业大学管理科学与工程学院 3 4 1.0 2.0
4 童华刚 安徽工业大学管理科学与工程学院 6 16 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (68)
共引文献  (217)
参考文献  (7)
节点文献
引证文献  (4)
同被引文献  (15)
二级引证文献  (2)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(10)
  • 参考文献(1)
  • 二级参考文献(9)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(12)
  • 参考文献(1)
  • 二级参考文献(11)
2012(10)
  • 参考文献(0)
  • 二级参考文献(10)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(7)
  • 参考文献(3)
  • 二级参考文献(4)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人工蜂群算法
多目标优化问题
自适应搜索
变异操作
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南华大学学报(自然科学版)
双月刊
1673-0062
43-1442/N
大16开
湖南衡阳市常胜西路28号南华大学内
42-102
1987
chi
出版文献量(篇)
2087
总下载数(次)
5
总被引数(次)
9174
论文1v1指导