基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
长期以来窃电问题一直困扰着电力企业,它不仅损害了供电企业的合法权益,扰乱了正常的供用电秩序,而且给安全用电带来了威胁.通过机器学习算法,对电力用电数据进行分析处理,可以预测用户是否存在窃电行为.基于电力数据中用户用电量提取相关特征,结合随机森林算法,提出了一种预测用户是否具有窃电行为的方法.对比多组实验数据,调节特征数量以及算法参数,以提高预测准确率和预测速度.
推荐文章
基于随机森林的车辆跟驰行为模型
车辆跟驰
机器学习
随机森林
回归预测
数据驱动
基于随机森林算法的用电负荷预测研究
用电负荷预测
随机森林
分类
回归
时间序列
基于小波变换和随机森林的森林类型分类研究
森林类型
小波变换
随机森林
分类
高分一号卫星影像
基于随机森林的精确目标检测方法
随机森林
决策树
目标检测
长宽比
Boosting算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于随机森林的用电行为分析
来源期刊 上海电力学院学报 学科 工学
关键词 随机森林 分类 窃电用户 机器学习
年,卷(期) 2017,(4) 所属期刊栏目 数据挖掘
研究方向 页码范围 331-336
页数 6页 分类号 TP18|TP301.6|TM715
字数 5352字 语种 中文
DOI 10.3969/j.issn.1006-4729.2017.04.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李红娇 上海电力学院计算机科学与技术学院 24 63 4.0 7.0
2 陈晶晶 上海电力学院计算机科学与技术学院 2 10 2.0 2.0
3 许智 上海电力学院计算机科学与技术学院 2 10 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (101)
共引文献  (437)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (14)
二级引证文献  (3)
1986(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(8)
  • 参考文献(1)
  • 二级参考文献(7)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(9)
  • 参考文献(3)
  • 二级参考文献(6)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(8)
  • 参考文献(1)
  • 二级参考文献(7)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
随机森林
分类
窃电用户
机器学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海电力大学学报
双月刊
2096-8299
31-2175/TM
大16开
上海市平凉路2103号
1980
chi
出版文献量(篇)
2781
总下载数(次)
10
总被引数(次)
11104
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导