基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高分辨率遥感影像提出了一种面向像斑的自优化迭代分类算法,基于半监督聚类算法获取训练样本,以支持向量机为核心设计了自优化迭代分类器.使用分型网络演化算法获取像斑,并从中选取少量标记样本;结合标记样本,利用半监督模糊C均值算法对像斑进行聚类,并基于密集度筛选得到训练样本;设计了自优化迭代支持向量机分类算法,对所有像斑进行迭代分类直到满足分类要求,并在分类过程中对近邻分类结果进行统计得到高可信度样本以自主优化训练样本集.基于以上方法分别对武汉市QuickBird和WorldView影像进行分类实验,分类总精度分别达到94.67%与92%,与基于人工选取训练样本情况下进行分类的分类总精度(82%与82.67%)、常规支持向量机分类总精度(87.33%与88%)、最小二乘支持向量机分类总精度(88%与89.33%)相比,精度有明显提升,分类效果较好.
推荐文章
高分辨率遥感影像自动分类方法研究
高分辨率影像
遥感
土地利用
自动分类
面向高分辨率遥感影像分类的分层策略研究
高分辨率遥感影像
易康软件
分层策略
精度分析
一种快速高分辨率遥感影像分割算法
高分辨率
遥感影像
分割
区域合并
梯度
分水岭
基于Ecognition的高分辨率遥感影像水体提取研究
面向对象
eCognition
多尺度分割
知识库
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 高分辨率遥感影像的自优化迭代分类方法
来源期刊 国防科技大学学报 学科 地球科学
关键词 高分辨率遥感影像 像斑 自优化 半监督 模糊C均值 支持向量机
年,卷(期) 2017,(4) 所属期刊栏目 信息与通信工程·计算机科学与技术
研究方向 页码范围 77-86
页数 10页 分类号 P23
字数 7023字 语种 中文
DOI 10.11887/j.cn.201704012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 万幼川 武汉大学遥感信息工程学院 106 2057 24.0 42.0
2 李刚 武汉大学遥感信息工程学院 57 418 11.0 18.0
3 史蕾 武汉大学遥感信息工程学院 8 6 2.0 2.0
4 姜莹 武汉大学遥感信息工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (88)
共引文献  (131)
参考文献  (23)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1956(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(4)
  • 参考文献(0)
  • 二级参考文献(4)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(7)
  • 参考文献(0)
  • 二级参考文献(7)
2003(6)
  • 参考文献(1)
  • 二级参考文献(5)
2004(7)
  • 参考文献(1)
  • 二级参考文献(6)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(14)
  • 参考文献(0)
  • 二级参考文献(14)
2007(10)
  • 参考文献(1)
  • 二级参考文献(9)
2008(6)
  • 参考文献(4)
  • 二级参考文献(2)
2009(8)
  • 参考文献(3)
  • 二级参考文献(5)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(4)
  • 参考文献(4)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(6)
  • 参考文献(6)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高分辨率遥感影像
像斑
自优化
半监督
模糊C均值
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国防科技大学学报
双月刊
1001-2486
43-1067/T
大16开
湖南省长沙市开福区德雅路109号
42-98
1956
chi
出版文献量(篇)
3593
总下载数(次)
5
论文1v1指导