基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
特征选择是一项重要的数据预处理技术,其目的是在不降低数据分类精度情形下选择一个特征子集,从而对原数据集达到降维的效果,同时也提高学习算法的性能.在邻域粗糙集模型中,传统方法构造出的对象邻域粒未考虑数据的分布问题,使得邻域粒存在一定的误差.首先通过方差来刻画数据的分布,然后根据数据分布提出一种改进的邻域粒,这种改进的邻域粒能够自适应数据的分布,有着较好的优越性,最后将改进邻域粒与邻域模糊熵结合,提出一种特征重要度的评估方式,并给出对应的特征选择算法.实验结果表明,新提出的特征选择算法在特征选择结果、时间消耗和特征子集的分类精度方面都更具一定的优越性.
推荐文章
基于模糊熵特征选择算法的SVM在漏洞分类中的研究
模糊熵
支持向量机
漏洞特征
漏洞文本
特征选择
漏洞分类
基于直觉模糊粒化的信息熵属性约简算法
粒计算
直觉模糊关系
隶属度
非隶属度
信息熵
属性约简
采用邻域决策分辨率的特征选择算法
特征选择
邻域粗糙集
邻域决策分辨率
基于最小化邻域互信息的邻域熵属性约简算法
粗糙集
属性约简
混合型信息系统
邻域熵
邻域互信息熵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进邻域粒的模糊熵特征选择算法
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 粗糙集 邻域粒 方差 模糊熵 特征选择
年,卷(期) 2017,(4) 所属期刊栏目
研究方向 页码范围 802-814
页数 13页 分类号 TP18
字数 8434字 语种 中文
DOI 10.13232/j.cnki.jnju.2017.04.024
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (62)
参考文献  (12)
节点文献
引证文献  (6)
同被引文献  (9)
二级引证文献  (16)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(12)
  • 引证文献(3)
  • 二级引证文献(9)
2020(7)
  • 引证文献(0)
  • 二级引证文献(7)
研究主题发展历程
节点文献
粗糙集
邻域粒
方差
模糊熵
特征选择
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
安徽省自然科学基金
英文译名:Anhui Provincial Natural Science Foundation
官方网址:http://www.ahinfo.gov.cn/zrkxjj/index.htm
项目类型:安徽省优秀青年科技基金
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导