原文服务方: 控制理论与应用       
摘要:
传统支持向量回归是单纯基于样本数据的输入输出值建模,仅使用样本数据信息,未充分利用其他已知信息,模型泛化能力不强.为了进一步提高其性能,提出一种融合概率分布和单调性先验知识的支持向量回归算法.首先将对偶二次规划问题简化为线性规划问题,在求解时,加入与拉格朗日乘子相关的单调性约束条件;通过粒子群算法优化惩罚参数和核参数,优化目标包括四阶矩估计表示的输出样本概率分布特性.实验结果表明,融合这两部分信息的模型,能使预测值较好地满足训练样本隐含的概率分布特性及已知的单调性,既提高了预测精度,又增加了模型的可解释性.
推荐文章
基于支持向量回归的光度配准算法
支持向量机
图像
配准
基于支持向量回归机和B样条网络回归曲线建模算法
支持向量机
支持向量回归
B样条网络
回归曲线模型
基于概率支持向量回归的产品设计时间预测模型
概率支持向量回归
产品设计
设计时间
异方差回归
先验知识
一种新的快速支持向量回归算法
二次规划
支持向量回归
连续过松弛
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合概率分布和单调性的支持向量回归算法
来源期刊 控制理论与应用 学科
关键词 支持向量回归 概率分布 单调性 粒子群优化
年,卷(期) 2017,(5) 所属期刊栏目 短文
研究方向 页码范围 671-676
页数 6页 分类号 TP273
字数 语种 中文
DOI 10.7641/CTA.2017.50885
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 颜学峰 华东理工大学化工过程先进控制和优化技术教育部重点实验室 61 628 12.0 22.0
2 张青 华东理工大学化工过程先进控制和优化技术教育部重点实验室 5 26 2.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (73)
共引文献  (30)
参考文献  (13)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(11)
  • 参考文献(2)
  • 二级参考文献(9)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(9)
  • 参考文献(1)
  • 二级参考文献(8)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(5)
  • 参考文献(4)
  • 二级参考文献(1)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量回归
概率分布
单调性
粒子群优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制理论与应用
月刊
1000-8152
44-1240/TP
大16开
1984-01-01
chi
出版文献量(篇)
4979
总下载数(次)
0
论文1v1指导