基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
结合聚合经验模态分解(Ensemble empirical model decomposition,EEMD)优秀的非平稳信号分解能力和奇异值分解(Singular value decomposition,SVD)的强去噪能力,提出了一种高速列车滚动轴承故障检测的新方法.该方法是应用EEMD对轴承轴箱位置的振动信号分解得到基本模式分量(Intrinsic Mode Function,IMF),对IMF矩阵做SVD得到正交化结果,分别利用各奇异值重构信号,应用各特征信号的Hilbert包络解调处理得到的包络谱诊断轴承故障类型.利用仿真信号数据和人工伤轴承试验数据对该方法进行验证,结果表明,该方法能有效提取轴承的故障特征信息,特征波形清晰准确,相比传统EEMD方法,在强噪声干扰时故障特征的诊断能力得到了显著提高.
推荐文章
基于EEMD 和改进VPMCD 的滚动轴承故障诊断方法
改进VPMCD
EEMD方法
奇异值分解
滚动轴承
故障诊断
基于形态学滤波和EEMD方法的风力发电系统滚动轴承故障诊断
集合经验模态分解
形态滤波
滚动轴承
故障诊断
滚动轴承故障诊断的案例推理方法
案例推理
滚动轴承
故障诊断
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 EEMD-SVD方法及其在高速列车滚动轴承故障诊断中的应用
来源期刊 佳木斯大学学报(自然科学版) 学科 交通运输
关键词 聚合经验模态分解 奇异值分解 包络解调 轴承故障诊断
年,卷(期) 2017,(4) 所属期刊栏目
研究方向 页码范围 571-576
页数 6页 分类号 U270.7
字数 3978字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张兵 西南交通大学牵引动力国家重点实验室 44 190 7.0 11.0
2 黄晨光 西南交通大学牵引动力国家重点实验室 12 40 4.0 6.0
3 谭翠 西南交通大学牵引动力国家重点实验室 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (8)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚合经验模态分解
奇异值分解
包络解调
轴承故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
佳木斯大学学报(自然科学版)
双月刊
1008-1402
23-1434/T
大16开
黑龙江省佳木斯市学府街148号
14-176
1983
chi
出版文献量(篇)
5218
总下载数(次)
9
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导