结合聚合经验模态分解(Ensemble empirical model decomposition,EEMD)优秀的非平稳信号分解能力和奇异值分解(Singular value decomposition,SVD)的强去噪能力,提出了一种高速列车滚动轴承故障检测的新方法.该方法是应用EEMD对轴承轴箱位置的振动信号分解得到基本模式分量(Intrinsic Mode Function,IMF),对IMF矩阵做SVD得到正交化结果,分别利用各奇异值重构信号,应用各特征信号的Hilbert包络解调处理得到的包络谱诊断轴承故障类型.利用仿真信号数据和人工伤轴承试验数据对该方法进行验证,结果表明,该方法能有效提取轴承的故障特征信息,特征波形清晰准确,相比传统EEMD方法,在强噪声干扰时故障特征的诊断能力得到了显著提高.