基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种新的基于粒子群优化算法的属性异常检测算法.该算法利用粒子群优化算法简单、寻优速度快的优点检测属性异常,在粒子群寻找最优值的过程中发现可能是属性异常的数据,并采用O-measure适应度评估属性异常,算法的时间复杂度是多项式级的.与全搜索检测算法相比,大幅减少了搜索范围;同时,与完全随机算法相比,采用启发式搜索规则,提高了查全率及查准率.实验结果表明,粒子群检测算法不仅执行效率高,而且保持了较高的查全率与查准率.
推荐文章
基于粒子群优化的异常入侵检测算法的研究
粒子群算法
动态聚类分析
入侵检测
适应度函数
基于聚类粒子群算法网络异常检测模型研究
网络异常
均值聚类
遗传算法
入侵检测
基于聚类的多子群粒子群优化算法
粒子群优化算法
聚类
子群
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化算法的属性异常检测
来源期刊 计算机工程与科学 学科 工学
关键词 粒子优化群算法 属性异常 异常检测
年,卷(期) 2017,(6) 所属期刊栏目 人工智能与数据挖掘
研究方向 页码范围 1186-1192
页数 7页 分类号 TP302
字数 6934字 语种 中文
DOI 10.3969/j.issn.1007-130X.2017.06.024
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘波 暨南大学信息科学技术学院 35 214 8.0 13.0
2 俞家宗 暨南大学信息科学技术学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (153)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (17)
二级引证文献  (4)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(5)
  • 引证文献(3)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
粒子优化群算法
属性异常
异常检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导