基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高短期风电输出功率预测的准确度,在分析研究基本预测方法的基础上,提出采用一种自适应混沌果蝇算法(ACFOA)优化RBF神经网络的预测方法.该方法中引入自适应混沌对果蝇算法的进化机制进行优化,并利用ACFOA算法改善RBF神经网络结构参数以提高网络的泛化能力,同时对某风电场的历史数据进行验证分析.仿真结果表明,相比于PSO-RBF预测方法,采用提出的预测模型能有效减少较大误差出现的频率,大幅度提高风电输出功率预测的准确度.
推荐文章
基于CS-SVR模型的短期风电功率预测
功率预测
布谷鸟搜索算法
支持向量回归机
参数寻优
异常数据剔除
基于风速融合和NARX神经网络的短期风电功率预测
短期风电功率预测
预测模型
NARX神经网络
风速融合
数据融合
数据处理
基于ARMA的风电功率预测
风力发电
ARMA
风电功率预测
风电机组
基于动态集成LSSVR的超短期风电功率预测
超短期风电功率预测
最小二乘支持向量回归
动态集成
动态时间弯曲距离
数值天气预报
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ACFOA优化RBF的短期风电功率预测
来源期刊 可再生能源 学科 工学
关键词 风电功率 预测模型 RBF神经网络 ACFOA算法 参数优化
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 80-85
页数 6页 分类号 TK83|TM614
字数 4144字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭道刚 上海电力学院自动化工程学院 157 1369 20.0 28.0
2 崔闪 上海电力学院自动化工程学院 1 7 1.0 1.0
3 钱玉良 上海电力学院自动化工程学院 14 40 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (167)
共引文献  (315)
参考文献  (12)
节点文献
引证文献  (7)
同被引文献  (28)
二级引证文献  (9)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(3)
  • 参考文献(0)
  • 二级参考文献(3)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(15)
  • 参考文献(0)
  • 二级参考文献(15)
2008(14)
  • 参考文献(1)
  • 二级参考文献(13)
2009(19)
  • 参考文献(0)
  • 二级参考文献(19)
2010(16)
  • 参考文献(1)
  • 二级参考文献(15)
2011(35)
  • 参考文献(2)
  • 二级参考文献(33)
2012(17)
  • 参考文献(2)
  • 二级参考文献(15)
2013(10)
  • 参考文献(3)
  • 二级参考文献(7)
2014(7)
  • 参考文献(2)
  • 二级参考文献(5)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(5)
  • 引证文献(5)
  • 二级引证文献(0)
2019(8)
  • 引证文献(2)
  • 二级引证文献(6)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
风电功率
预测模型
RBF神经网络
ACFOA算法
参数优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
可再生能源
月刊
1671-5292
21-1469/TK
大16开
辽宁省营口市西市区银泉街65号
8-61
1983
chi
出版文献量(篇)
4935
总下载数(次)
14
总被引数(次)
41118
论文1v1指导