基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统两阶段层次文本分类模型(THTC模型)是一种解决大规模层次文本分类问题的有效方法,但该模型的分类准确率仍然不是很高.为了缓解这个问题,提出了结合邻居辅助策略的两阶段层次文本分类模型(THTC-NA模型).THTC-NA模型由搜索阶段和分类阶段组成.搜索阶段采用扁平策略从所有的叶子类别中选择与待分类文档最相关的k个类别作为候选类别集,这样可以大大减小分类阶段的搜索空间.分类阶段通过结合候选类别的祖先类别和兄弟类别的分类结果来帮助计算候选类别在分类阶段的结果.最后将搜索阶段的结果和分类阶段的结果融合起来共同决定待分类文档的目标类别.在数据集Newsgroups-18828上的实验表明,相对于THTC模型,THTC-NA模型对提高层次文本分类准确率有很大的帮助.
推荐文章
基于两阶段特征选择的医疗敏感文本分类
医疗数据
隐私保护
特征选择
敏感数据
文本分类
CNN-ELM混合短文本分类模型
文本分类
卷积神经网络
极速学习机
基于发现特征子空间模型的文本分类算法
发现特征子空间
文本分类
模式
文本分类技术研究
文本挖掘
文本分类
特征表示
特征抽取
模型评估
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合邻居辅助策略的两阶段层次文本分类模型
来源期刊 计算机工程与应用 学科 工学
关键词 两阶段 层次文本分类 邻居辅助策略 类别层次
年,卷(期) 2017,(9) 所属期刊栏目 大数据与云计算
研究方向 页码范围 97-102
页数 6页 分类号 TP311
字数 5482字 语种 中文
DOI 10.3778/j.issn.1002-8331.1601-0405
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 古平 重庆大学计算机学院 38 335 11.0 17.0
2 王春元 重庆大学计算机学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (36)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
两阶段
层次文本分类
邻居辅助策略
类别层次
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导