基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
图匹配是计算机视觉中基础且重要的一个问题.稀疏约束作为一种有效的优化方法,被广泛应用于机器学习和图像处理中.传统的图匹配方法并不能获得足够有效且稀疏的近似解,为解决这个问题且进一步探究稀疏优化在图匹配中的应用,故引入一种L1/2范数以改进高阶张量图匹配模型,并提出了基于迭代重加权的方法以近似求解该非凸非光滑模型.通过标准实验数据集上的对比实验表明,基于迭代重加权的高阶图匹配算法可以得到更加有效且稀疏性强的解,提高了匹配准确率.同时在抵抗匹配噪声的表现上优于传统算法,具有更强的鲁棒性.
推荐文章
基于改进加权图转换的图像匹配算法
图像匹配
马氏距离
加权图转换
K-近邻
角度距离
基于迭代张量高阶奇异值分解的运动目标提取
背景建模
低秩矩阵恢复
张量
高阶奇异值分解
矩阵奇异值分解
运动目标提取
开闭运算
迭代张量高阶奇异值分解的图像恢复方法
张量
缺失值
高阶奇异值分解
迭代
恢复
基于迭代加权虚拟力算法的DSNs覆盖增强
有向传感器网络
覆盖增强
虚拟力
加权
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于迭代重加权的高阶张量图匹配算法
来源期刊 微型电脑应用 学科 工学
关键词 L1/2范数 迭代重加权 高阶图匹配
年,卷(期) 2018,(1) 所属期刊栏目 研究与设计
研究方向 页码范围 60-63,80
页数 5页 分类号 TP391
字数 3470字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 石冰 河海大学计算机与信息学院 11 117 3.0 10.0
3 韩立新 河海大学计算机与信息学院 47 272 9.0 15.0
4 徐国夏 河海大学计算机与信息学院 4 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (6)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (3)
二级引证文献  (3)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
L1/2范数
迭代重加权
高阶图匹配
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微型电脑应用
月刊
1007-757X
31-1634/TP
16开
上海市华山路1954号上海交通大学铸锻楼314室
4-506
1984
chi
出版文献量(篇)
6963
总下载数(次)
20
总被引数(次)
28091
论文1v1指导