基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
丰富的居民出行行为信息对挖掘城市热点区域以及居民出行模式有很大的帮助,并且对更好地满足居民出行需求也有一定的启示作用.最新的相关研究主要聚焦于城市中区域之间的空间移动模式,但并不能识别移动模式发生的时间以及持续的时长.针对这一问题,提出具有时空特性的区域移动模式挖掘算法STMPZ(Spatio-Temporal based Movement Patterns between Zones).该算法在DBSCAN(Density-based Spatial Clustering of Applications with Noise)算法的基础上,通过将对象从点扩展成一条出行OD(Origin-Destination)记录,并引入时间特性,最终可以挖掘出具有时空特性的区域移动模式.为了验证所提出算法的可行性和有效性,利用真实的上海地铁通勤数据集进行实验,实验结果表明,该算法可以快速有效地检测出具有高覆盖率和准确率的区域移动模式.此外,该算法也可以通过修改聚类过程的参数应用于其他区域或类型的交通数据.
推荐文章
一种具有时序特征的告警关联规则挖掘算法
故障管理
关联规则
数据挖掘
基于类Apriori原则的区域周期模式挖掘算法
时间序列
区域周期模式
Apriori原则
模式挖掘
移动对象频繁模式挖掘算法的研究
移动对象
频繁轨迹
轨迹标识列表
基于时空轨迹的移动对象汇聚模式挖掘算法
轨迹数据挖掘
汇聚模式
聚集模式
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 具有时空特性的区域移动模式挖掘算法
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 区域移动模式 时空分析 出行行为 移动模式挖掘
年,卷(期) 2018,(6) 所属期刊栏目
研究方向 页码范围 1171-1182
页数 12页 分类号 TP301.6
字数 6161字 语种 中文
DOI 10.13232/j.cnki.jnju.2018.06.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吉根林 南京师范大学计算机科学与技术学院 138 2757 22.0 50.0
7 张海平 南京师范大学地理科学学院 6 68 3.0 6.0
9 周星星 南京师范大学计算机科学与技术学院 7 17 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (4)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(6)
  • 参考文献(6)
  • 二级参考文献(0)
2018(6)
  • 参考文献(6)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
区域移动模式
时空分析
出行行为
移动模式挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导