作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在丝绸等织物生产过程中,经常会出现织物产生非正常花纹的缺陷.目前对织物缺陷的检测主要是通过人工肉眼判别,该方法花费时间长、人工成本高,会给企业带来较大的经济负担.本文通过使用BP和SAE两种神经网络对织物进行缺陷检测,并判断是何种缺陷:首先介绍了使用BP神经网络对大量样本训练并保存,得到最佳权值,从而实现对于图像的缺陷检测和分类;训练样本通过SAE深度神经网络训练得到重构图像,再不断微调参数,获得最佳的权重数值,运用滤波器过滤噪声,最终得到结果.通过大量的实验,结果表明两种方法对织物缺陷检测均具有非常良好的效果,充分证明了深度神经网络在工业生产织物过程中运用的可行性.
推荐文章
采用BP算法和深度SAE网络的 学生综合能力评价方法
反向传播算法
深度神经网络
堆栈式自编码器
综合能力评价
基于BP神经网络和均值差分的TFT-LCD MURA缺陷检测方法
机器视觉
BP神经网络
TFT-LCD
MURA
缺陷检测
基于GA改进BP神经网络网络异常检测方法
网络异常检测
BP神经网络
遗传算法
异常流量
基于深度卷积神经网络的织物花型分类
深度卷积神经网络
织物花型
图像分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 BP和SAE深度神经网络方法的织物缺陷检测研究
来源期刊 智能物联技术 学科 工学
关键词 BP神经网络 SAE 织物缺陷检测
年,卷(期) 2018,(3) 所属期刊栏目 技术应用
研究方向 页码范围 25-31
页数 7页 分类号 TP183
字数 4045字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨朔 13 51 4.0 7.0
2 严伟 12 19 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (24)
参考文献  (4)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
SAE
织物缺陷检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能物联技术
双月刊
1671-7457
33-1411/TP
大16开
杭州市西湖区马塍路36号
1977
chi
出版文献量(篇)
2506
总下载数(次)
0
总被引数(次)
629
论文1v1指导