原文服务方: 计算技术与自动化       
摘要:
BP 神经网络易于陷入局部最小点以及收敛速度较慢,为了克服这些缺陷,本文对 BP 神经网络进行改进。通过对BP神经网络的样本进行采样分析,得到训练目标函数与输入向量之间的相关系数,依据此相关系数得到网络训练时的初始权重,再给待训练的BP神经网络进行初始权重的赋值,通过对初始权重的科学赋值从而达到避免网络在训练过程中陷入局部最小点与加快收敛速度的目的。本文通过实际验证,确实达到预期目的。
推荐文章
BP神经网络的改进及其应用
人工神经网络
BP神经网络
需水量
预测
BP神经网络的双重优化的改进研究
BP神经网络
动量因子
激活函数
交通事故预测
基于改进BP神经网络的关联挖掘模型设计
BP神经网络
关联挖掘模型
算法改进
二次函数
选择能力
用户交互
基于改进BP神经网络的预测模型及其应用
神经网络
BP算法
L-M算法
非线性系统
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 BP 神经网络的改进
来源期刊 计算技术与自动化 学科
关键词 BP神经网络 收敛速度 初始权重 局部最小
年,卷(期) 2015,(4) 所属期刊栏目 【图形图像技术】
研究方向 页码范围 86-89
页数 4页 分类号 TP391.9
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈斌 海军工程大学电子工程学院 38 148 7.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (15)
同被引文献  (28)
二级引证文献  (9)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(5)
  • 引证文献(5)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(9)
  • 引证文献(6)
  • 二级引证文献(3)
2019(7)
  • 引证文献(2)
  • 二级引证文献(5)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
BP神经网络
收敛速度
初始权重
局部最小
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算技术与自动化
季刊
1003-6199
43-1138/TP
16开
1982-01-01
chi
出版文献量(篇)
2979
总下载数(次)
0
总被引数(次)
14675
论文1v1指导