基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统文本分类算法在面对日益增多的海量文本数据时效率低下的问题,论文在Spark计算框架上设计并实现了一种并行化朴素贝叶斯文本分类器,并着重介绍了基于Spark计算框架的文本分类实现过程。实验阶段,分别在单机、Map Reduce和Spark三种不同的计算框架下测试了文本分类的效率,并使用控制变量的方法在Spark计算框架下设计对照实验。实验证明,Spark计算框架下的朴素贝叶斯算法在面对海量文本分类时有着较高的处理效率。
推荐文章
Spark框架下利用分布式NBC的大数据文本分类方法
文本分类
MapReduce
Spark框架
分布式
朴素贝叶斯分类器
机器学习
Spark框架下利用分布式NBC的大数据文本分类方法
文本分类
MapReduce
Spark框架
分布式
朴素贝叶斯分类器
机器学习
Spark框架结合分布式KNN分类器的网络大数据分类处理方法
分类处理
Apache Spark
并行机制
数据挖掘
汉明损失
K最近邻
基于SLIQ的分布式图像分类框架的研究实现
分布式数据挖掘
医学图像
分类算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Spark计算框架的分布式文本分类方法研究
来源期刊 数据挖掘 学科 工学
关键词 文本分类 计算框架 朴素贝叶斯 TF-IDF
年,卷(期) 2018,(4) 所属期刊栏目
研究方向 页码范围 151-161
页数 11页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本分类
计算框架
朴素贝叶斯
TF-IDF
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据挖掘
季刊
2163-145X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
140
总下载数(次)
1
论文1v1指导