基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对许多领域中普遍存在的非平稳多元时间序列的建模处理问题,提出了LASSO向量自回归模型的递推在线拟合方法,利用遗忘指数来实现模型的动态变化,并用循环坐标下降算法在线的对向量自回归模型进行系数估计.为证明模型的有效性,将其应用于风电场风电功率的预测,并以传统的向量自回归模型和分层向量自回归模型作为比较基准.根据实验结果表明,在线自适应LASSO向量自回归模型的预测精度高于传统的批量模型,通过系数矩阵图也可以看出,预测风电场临近的风电场对预测点存在一定程度的影响,但自身影响是最大的.将递归在线估计与LASSO向量自回归模型的结合应用于风电功率的预测,对于提高风电功率的预测精度以及改善风电系统工作效率有重要意义.
推荐文章
基于自回归滑动平均模型的风电功率预测
风电功率
自回归滑动平均模型
风电预测
自适应变异粒子群优化BP的短期风电功率预测模型
短期风电预测
互信息
自适应惯性权重系数
变异因子
反向传播神经网络
基于ARMA的风电功率预测
风力发电
ARMA
风电功率预测
风电机组
基于CS-SVR模型的短期风电功率预测
功率预测
布谷鸟搜索算法
支持向量回归机
参数寻优
异常数据剔除
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 在线自适应LASSO罚向量自回归模型的风电功率预测
来源期刊 燕山大学学报 学科 工学
关键词 多元时间序列 风电功率预测 向量自回归模型 遗忘指数 坐标下降法 套索
年,卷(期) 2018,(6) 所属期刊栏目 信息与计算机技术
研究方向 页码范围 532-538,551
页数 8页 分类号 TP391|TP182
字数 4693字 语种 中文
DOI 10.3969/j.issn.1007-791X.2018.06.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王金甲 燕山大学河北省信息传输与信号处理重点实验室 62 399 9.0 18.0
5 彭汝佳 燕山大学河北省信息传输与信号处理重点实验室 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (17)
参考文献  (11)
节点文献
引证文献  (7)
同被引文献  (16)
二级引证文献  (2)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(7)
  • 引证文献(6)
  • 二级引证文献(1)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
多元时间序列
风电功率预测
向量自回归模型
遗忘指数
坐标下降法
套索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
燕山大学学报
双月刊
1007-791X
13-1219/N
大16开
河北省秦皇岛市河北大街西段438号
18-73
1963
chi
出版文献量(篇)
2254
总下载数(次)
2
总被引数(次)
12529
论文1v1指导