基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对LeNet-5网络模型识别分类准确度问题,提出一种基于深度Gabor卷积神经网络的识别分类方法.在LeNet-5模型的基础上,引入了Gabor层,使用Gabor核作为提取图像特征的卷积核,Gabor卷积核从图像频域的不同尺度、不同方向上提取更多特征.为了避免网络训练中的梯度消失问题,使用Relu函数作为网络中的激活函数.将改进后的模型在MNIST手写体数据集上进行试验,识别正确率达到99.34%.与支持向量机和卷积神经网络等分类方法作比较,结果表明,改进后的深度Gabor卷积神经网络的具有更高的识别性能.
推荐文章
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
结合高斯核函数的卷积 神经网络跟踪算法
视觉跟踪
卷积神经网络
高斯核函数
粒子滤波
基于并行卷积核交叉模块的卷积神经网络设计
卷积神经网络
网络改进
卷积核
图像分类
特征提取
结果分析
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Gabor核的卷积神经网络改进算法及应用
来源期刊 燕山大学学报 学科 工学
关键词 卷积神经网络 Gabor卷积核 Relu函数 特征提取 识别分类
年,卷(期) 2018,(5) 所属期刊栏目 信息与计算机技术
研究方向 页码范围 427-433
页数 7页 分类号 TP391
字数 3865字 语种 中文
DOI 10.3969/j.issn.1007-791X.2018.05.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨景明 燕山大学电气工程学院 105 610 14.0 18.0
2 魏立新 燕山大学电气工程学院 48 282 9.0 14.0
3 杨波 燕山大学电气工程学院 14 28 3.0 4.0
4 王亚超 燕山大学电气工程学院 10 102 6.0 10.0
5 周豪腾 燕山大学电气工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (110)
共引文献  (560)
参考文献  (13)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(10)
  • 参考文献(1)
  • 二级参考文献(9)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(12)
  • 参考文献(1)
  • 二级参考文献(11)
2015(13)
  • 参考文献(2)
  • 二级参考文献(11)
2016(14)
  • 参考文献(3)
  • 二级参考文献(11)
2017(6)
  • 参考文献(3)
  • 二级参考文献(3)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
Gabor卷积核
Relu函数
特征提取
识别分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
燕山大学学报
双月刊
1007-791X
13-1219/N
大16开
河北省秦皇岛市河北大街西段438号
18-73
1963
chi
出版文献量(篇)
2254
总下载数(次)
2
总被引数(次)
12529
论文1v1指导