基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有基于划分的聚类算法无法有效聚类簇大小和簇密度有较大差异的非均匀数据的问题,提出一种基于变异系数聚类算法.从聚类优化目标的角度出发,分析了以K-means为代表的划分聚类算法引发"均匀效应"的成因;提出以变异系数度量非均匀数据的分布散度,并基于变异系数定义一种非均匀数据的相异度公式;基于相异度公式定义了聚类目标优化函数,并根据局部优化方法给出聚类算法过程.在合成和真实数据集上的试验结果表明,与K-means、Verify2、ESSC聚类算法相比,本研究提出的非均匀数据的变异系数聚类算法(coefficient of variation clustering for non-uniform data,CVCN)聚类精度提升5%~40%.
推荐文章
变异系数的抽样分布
变异系数
抽样分布
分布密度
基于变异的k-means聚类算法
聚类
mk-means算法
变异
针对非均匀数据集的DBSCAN过滤式改进算法
聚类
DBSCAN
过滤
非均匀密度
数据挖掘
基于聚类系数的推荐算法
推荐系统
有向加权图
聚类系数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 非均匀数据的变异系数聚类算法
来源期刊 山东大学学报(工学版) 学科 工学
关键词 聚类 基于划分聚类 非均匀数据 均匀效应 变异系数 K-means
年,卷(期) 2018,(3) 所属期刊栏目 机器学习与数据挖掘
研究方向 页码范围 140-146
页数 7页 分类号 TP311
字数 5081字 语种 中文
DOI 10.6040/j.issn.1672-3961.0.2017.410
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈黎飞 福建师范大学数学与信息学院 42 344 9.0 17.0
3 徐鲲鹏 福建师范大学数学与信息学院 2 1 1.0 1.0
6 杨天鹏 福建师范大学数学与信息学院 3 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (754)
参考文献  (13)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类
基于划分聚类
非均匀数据
均匀效应
变异系数
K-means
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导