针对现有基于划分的聚类算法无法有效聚类簇大小和簇密度有较大差异的非均匀数据的问题,提出一种基于变异系数聚类算法.从聚类优化目标的角度出发,分析了以K-means为代表的划分聚类算法引发"均匀效应"的成因;提出以变异系数度量非均匀数据的分布散度,并基于变异系数定义一种非均匀数据的相异度公式;基于相异度公式定义了聚类目标优化函数,并根据局部优化方法给出聚类算法过程.在合成和真实数据集上的试验结果表明,与K-means、Verify2、ESSC聚类算法相比,本研究提出的非均匀数据的变异系数聚类算法(coefficient of variation clustering for non-uniform data,CVCN)聚类精度提升5%~40%.