基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
[目的/意义]对已有的文本表示、分类算法进行组合,遴选一种复杂度低、训练时间少的组合方式,构建商品评论情感文本分类的优化模型。[方法/过程]以Keras API为应用环境,将Word2vec词向量输入Embedding嵌入层,依据句子词索引序列,通过控制trainable参数实现3种商品评论的文本表示;将不同的文本表示分别与不同分类算法进行匹配,分析分类效果差异,确立较优算法组合。[结果/结论 ]Word2vec词向量输入Embedding嵌入层继续训练的文本表示方法,结合TextCNN算法训练获得的分类模型,在商品评论测试集上分类效果表现较好,准确率和ROC曲线面积AUC值分别为94.02%、0.982 7。应用表明,分类模型能较好实现商品评论的情感分类,有较好的分类泛化能力。
推荐文章
单词统计特性在情感词自动抽取和商品评论分类中的作用
统计特征
情感词提取
商品评论分类
基于联合法选取特征的产品评论情感分类研究
文本分类
产品评论
情感倾向性
特征量选取
联合法选取特征
基于深度学习的商品评价情感分析与研究
深度学习
自然语言处理
词向量
卷积神经网络
循环神经网络
分流器
情感
基于SVM的产品评论情感分析系统的设计与实现
产品评论
SVM
搭配识别
情感分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的商品评论情感分类研究
来源期刊 知识管理论坛 学科 工学
关键词 深度学习 情感分类 Word2vec词向量 Embedding嵌入层 TextCNN
年,卷(期) 2018,(6) 所属期刊栏目
研究方向 页码范围 353-363
页数 11页 分类号 TP391.1
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李文江 重庆文理学院机电工程学院 25 69 5.0 8.0
2 陈诗琴 重庆文理学院图书馆 19 13 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(8)
  • 参考文献(8)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
情感分类
Word2vec词向量
Embedding嵌入层
TextCNN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
知识管理论坛
双月刊
2095-5472
11-6036/C
16开
北京中关村北四环西路33号中科院文献情报
2010
chi
出版文献量(篇)
761
总下载数(次)
3
总被引数(次)
1901
论文1v1指导