基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高降雨条件下短时公交客流的预测精度,提出一种基于SVM-KNN的短时公交客流预测模型.分析了降雨天气与公交客流的相关关系,揭示不同降雨等级对公交客流量的影响.进一步发挥支持向量机(SVM)的快速归类和K近邻算法(KNN)的高预测精度的优点,提出了基于SVM-KNN的短时公交客流预测模型.具体方法为:用SVM训练少量数据生成子数据库,随后采用KNN识别相似模式预测短时公交客流.通过采集深圳市南山区4条公交线路降雨条件下的客流数据进行算例仿真,验证了模型和算法的有效性.结果表明,SVM-KNN算法的综合平均绝对误差(MAE)为8.437,综合均方误差(MSE)为10.725,综合平均相对误差(MAPE)为8.8%,综合均方相对误差(MSPE)为11.3%,比常用的RBF模型的MAE,MSE,MAPE及MSPE各类误差分别降低了3.646,3.631,4.6%,5.5%.
推荐文章
基于模糊神经网络的公交客流时段预测
公共交通
线路客流实时分布
模糊神经网络
相似性分析
基于随机灰色蚁群神经网络的近期公交客流预测
城市交通
灰色模型
神经网络
蚁群优化算法
公交客流
预测
降雨条件下高速公路短时行程时间预测研究
交通工程
行程时间预测
径向基函数神经网络
K最近邻非参数回归
组合预测
降雨
基于半监督学习的SVM-KNN
半监督学习
支持向量机
K-近邻
边界向量
迭代
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SVM-KNN的降雨条件下短时公交客流预测
来源期刊 交通信息与安全 学科 交通运输
关键词 城市交通 公交客流 短时预测 SVM-KNN 降雨条件
年,卷(期) 2018,(5) 所属期刊栏目 交通规划与管理
研究方向 页码范围 117-123
页数 7页 分类号 U491.1
字数 4276字 语种 中文
DOI 10.3963/j.issn.1674-4861.2018.05.015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (73)
共引文献  (54)
参考文献  (15)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(6)
  • 参考文献(2)
  • 二级参考文献(4)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(11)
  • 参考文献(1)
  • 二级参考文献(10)
2014(8)
  • 参考文献(2)
  • 二级参考文献(6)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
城市交通
公交客流
短时预测
SVM-KNN
降雨条件
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通信息与安全
双月刊
1674-4861
42-1781/U
大16开
武汉市武昌和平大道1178号
38-94
1983
chi
出版文献量(篇)
3739
总下载数(次)
14
总被引数(次)
29572
论文1v1指导