基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对星载合成孔径雷达(SAR)信号的电子对抗侦察识别问题,提出了一种基于支持向量机的星载SAR信号分类方法.该方法基于样本聚集性构建二叉树结构,解决了支持向量机的多分类问题;同时减小了二叉树结构的分类误差积累,选择高斯核函数解决样本的非线性问题,并采用遗传算法对模型参数进行优化,从而提高模型的分类性能.文中对加拿大的Radarsat-2星载SAR卫星的四种信号进行了分类仿真,并与传统的参数匹配法进行了比较,结果表明文中的方法具有较好的识别率,同时模型的泛化能力也比较强,有利于解决对星载SAR的侦察难点问题.
推荐文章
基于NSCT和支持向量机的SAR图像识别
图像识别
合成孔径雷达
非下采样轮廓波变换
支持向量机
基于支持向量机的通信信号调制识别方法研究
支持向量机
模式识别
调制信号
识别分类
基于支持向量机的人脸识别身份验证技术研究
支持向量机
核函数
最优分类超平面
思维进化算法
基于支持向量机的调制模式识别技术研究
支持向量机
调制识别
特征参数
二叉树
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机的星载SAR信号识别技术研究
来源期刊 现代雷达 学科 工学
关键词 星载合成孔径雷达 支持向量机 二叉树 多分类 遗传算法
年,卷(期) 2018,(11) 所属期刊栏目 信号处理
研究方向 页码范围 31-36
页数 6页 分类号 TN957.51
字数 4734字 语种 中文
DOI 10.16592/j.cnki.1004-7859.2018.11.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 宋小全 20 53 4.0 5.0
2 王哲涛 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (5)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
星载合成孔径雷达
支持向量机
二叉树
多分类
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代雷达
月刊
1004-7859
32-1353/TN
大16开
南京3918信箱110分箱
28-288
1979
chi
出版文献量(篇)
5197
总下载数(次)
19
总被引数(次)
32760
论文1v1指导