基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
场景识别一直是图像处理领域的重要问题之一,对研究移动机器人定位、计算机视觉等方面具有重要意义.然而,室内场景的复杂性与无序性使室内场景识别研究面临许多挑战.传统的手工提取特征无法充分描述室内场景的信息,而卷积神经网络提取的特征能够包含丰富的场景语义和结构信息,且对于平移、比例缩放、倾斜等形式的变形具有高度不变性,因此提出了应用基于卷积神经网络的GoogLeNet网络模型来完成识别任务的方法.该网络模型在深度学习框架Caffe上对MIT_Indoor数据集的识别准确率为59.7%,高于使用传统手工提取特征的算法的准确率,对比结果说明了深度卷积神经网络在室内场景识别问题上的有效性.
推荐文章
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的室内场景识别
来源期刊 郑州大学学报(理学版) 学科 工学
关键词 场景识别 图像处理 卷积神经网络 GoogLeNet Caffe
年,卷(期) 2018,(3) 所属期刊栏目 信息科学
研究方向 页码范围 73-77
页数 5页 分类号 TP391.4
字数 3439字 语种 中文
DOI 10.13705/j.issn.1671-6841.2017260
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨鹏 河北工业大学人工智能与数据科学学院 162 1021 16.0 23.0
3 孙昊 河北工业大学人工智能与数据科学学院 25 83 6.0 8.0
9 孙丽红 河北工业大学人工智能与数据科学学院 3 10 2.0 3.0
10 蔡青青 河北工业大学人工智能与数据科学学院 3 10 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (4)
参考文献  (3)
节点文献
引证文献  (6)
同被引文献  (17)
二级引证文献  (3)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(6)
  • 引证文献(3)
  • 二级引证文献(3)
研究主题发展历程
节点文献
场景识别
图像处理
卷积神经网络
GoogLeNet
Caffe
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
郑州大学学报(理学版)
季刊
1671-6841
41-1338/N
大16开
郑州市高新技术开发区科学大道100号
36-191
1962
chi
出版文献量(篇)
2278
总下载数(次)
0
总被引数(次)
9540
论文1v1指导