基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
主要针对局部图嵌入(Locally Graph Embedding,LGE)算法在训练样本偏少时进行特征提取,会产生识别精度不高情况,通过引入多流形思想,结合 LGE和最大间距准则(Maximum Marginal Criterion,MMC)算法,提出了一种最新的特征提取算法——最大间距准则框架下的多流形局部图嵌入(Multi-Manifold Locally Graph Embedding Based on Maximum Marginal Criterion,MLGE/MMC)算法.首先,该算法将每幅图像分成多幅小图像,这一幅图像分成的这些小图像在高维空间中就构成一个流形,以此类推,多幅图像就构成了多流形;其次,通过最大化多流形类间距离,同时最小化流形类内距离来寻找最佳投影矩阵,即分别构建多流形类间散度矩阵和类内散度矩阵;最后,在 MMC准则框架下构造目标函数,通过拉格朗日乘子法和迭代来解决约束条件下的优化问题.在ORL,Yale及 AR人脸库上的实验,验证了所提算法的有效性.
推荐文章
核二维最大间距准则
核函数
判别分析
特征提取
矩阵表示
基于半监督学习的最大间距准则人脸识别
半监督学习
最大间距准则
人脸识别
基于最大边界准则的稀疏局部嵌入特征提取方法
特征提取
局部线性嵌入
最大边界准则
弹性网回归
基于分类概率保持的最大间距准则人脸识别方法
分类概率保持
最大间距准则
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 最大间距准则框架下的多流形局部图嵌入(MLGE/MMC)算法
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 局部图嵌入 多流形 最大间距准则 特征提取 人脸库
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 462-470
页数 9页 分类号 TP391.4
字数 4282字 语种 中文
DOI 10.13232/j.cnki.jnju.2018.02.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 万鸣华 南京审计大学工学院 8 3 1.0 1.0
5 杨国为 南京审计大学工学院 15 26 2.0 4.0
6 赖志辉 深圳大学计算机与软件学院 3 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(3)
  • 参考文献(3)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
局部图嵌入
多流形
最大间距准则
特征提取
人脸库
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导