基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对卷积核随机初始化以及梯度下降法训练卷积神经网络易陷入局部最值问题,提出粒子群算法优化卷积核(particle swarm optimization-convolution kernel,PSO-ConvK)的图像识别方法.使用参数迁移法构造卷积神经网络,并提取卷积核,利用PSO不断更新粒子的速度和位置,寻找全局最优值以初始化卷积核,将其传递到卷积神经网络,用肺部肿瘤数据训练卷积神经网络,结合梯度下降法修正网络权重,使得PSO算法的全局优化能力与梯度下降法的局部搜索能力相结合.试验通过批次大小、迭代次数以及网络层数3个角度验证方法的有效性,并与高斯函数优化卷积核进行对比.结果显示,PSO优化卷积核的识别率始终高于随机化卷积核和高斯卷积核,识别率最终达到98.3%,具有一定的可行性和优越性.
推荐文章
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
基于卷积神经网络的植物图像识别APP开发——"植鉴"
深度学习
TensorFlow框架
Inception-v3网络模型
'植鉴'APP
基于卷积神经网络的小样本树皮图像识别方法
树皮图像
卷积神经网络
Inception_v3
小样本
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-ConvK卷积神经网络的肺部肿瘤图像识别
来源期刊 山东大学学报(工学版) 学科 工学
关键词 粒子群算法 卷积核 卷积神经网络 肺部肿瘤 医学图像
年,卷(期) 2018,(5) 所属期刊栏目 机器学习与数据挖掘
研究方向 页码范围 77-84
页数 8页 分类号 TP183
字数 语种 中文
DOI 10.6040/j.issn.1672-3961.0.2018.191
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 夏勇 西北工业大学计算机学院 20 147 6.0 12.0
2 周涛 宁夏医科大学公共卫生与管理学院 49 522 10.0 21.0
6 梁蒙蒙 宁夏医科大学公共卫生与管理学院 9 16 2.0 3.0
7 张飞飞 宁夏医科大学公共卫生与管理学院 9 17 2.0 3.0
8 杨健 宁夏医科大学公共卫生与管理学院 10 16 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (1036)
参考文献  (16)
节点文献
引证文献  (3)
同被引文献  (18)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(11)
  • 参考文献(0)
  • 二级参考文献(11)
2016(10)
  • 参考文献(8)
  • 二级参考文献(2)
2017(5)
  • 参考文献(5)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群算法
卷积核
卷积神经网络
肺部肿瘤
医学图像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导