基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对宽带多极化雷达,提出将高分辨一维距离像(high resolution range profile,HRRP)与极化信息相结合的算法,获得目标在4种极化组态下的一维距离像并将其组成极化距离矩阵.该算法对目标进行全方位的特征抽取与建模,以适应不同的姿态,有助于减少高分辨一维距离像方位敏感性带来的影响.然后提出了直接基于极化距离矩阵、Pauli分解和Freeman分解三种特征提取方式对极化距离矩阵进行目标特征的提取,并将获得的目标特征向量结合起来送入搭建的深度卷积神经网络进行训练学习.该方法不仅结合了不同的特征提取方式以对极化距离矩阵进行更全面的特征提取,而且深度卷积神经网络的运用又对目标特征向量进行了深层学习,仿真结果验证了该方法的有效性.
推荐文章
基于卷积神经网络的高分辨率雷达目标识别
高分辨距离像
雷达目标识别
卷积神经网络
批归一化
支持向量机
基于BP神经网络的雷达目标识别算法研究
BP神经网络
雷达目标识别
基于模糊神经网络的目标识别研究
目标识别
模糊神经网络
传感器
基于BP神经网络的防空目标识别方法
防空目标
目标识别技术
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积神经网络的极化雷达目标识别
来源期刊 电波科学学报 学科 工学
关键词 极化距离矩阵 雷达目标识别 Pauli分解 Freeman分解 深度卷积神经网络
年,卷(期) 2018,(5) 所属期刊栏目 论文
研究方向 页码范围 575-582
页数 8页 分类号 TP391
字数 5468字 语种 中文
DOI 10.13443/j.cjors.2017112101
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 盛卫星 69 376 11.0 15.0
2 韩玉兵 50 305 9.0 15.0
3 盖晴晴 1 2 1.0 1.0
4 南华 1 2 1.0 1.0
5 白振东 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (15)
参考文献  (14)
节点文献
引证文献  (2)
同被引文献  (11)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
极化距离矩阵
雷达目标识别
Pauli分解
Freeman分解
深度卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电波科学学报
双月刊
1005-0388
41-1185/TN
大16开
河南市新乡138信箱3分箱
36-260
1986
chi
出版文献量(篇)
3417
总下载数(次)
11
总被引数(次)
30224
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导