基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于人类视觉注意机制的显著性对象检测模型作为能主动感知图像中重要信息的有效方法,对探索视觉早期认知过程的大范围知觉信息组织具有重要意义.然而,由于夜间图像具有低信噪比和低对比度特性,现有的视觉显著性对象检测模型在夜间场景中容易受到噪声干扰、弱纹理模糊等多方面因素的影响.有鉴于此,提出一种基于区域协方差和全局搜索的夜间图像显著性对象检测方法.首先,将输入图像分割为超像素块,并分别计算它们的协方差.然后,使用超像素块协方差的差异性作为适应度函数,并结合全局搜索算法来优化各个超像素块的显著值.最后,通过图扩散方法来精炼显著图结果.实验测试采用了5个公开图像数据集和1个夜间图像数据集,通过与11种目前主流的视觉显著性对象检测模型进行对比,综合评价了所提出模型的性能.
推荐文章
一种基于图像特征稀疏约束的显著性检测算法
显著性检测
特征选择
特征融合
稀疏约束
线性回归
图像显著性检测方法解析
图像显著性
显著性检测
检测方法
图像处理
卷积特征图融合与显著性 检测的图像检索
图像检索
特征图融合
显著性检测
卷积神经网络
块聚类的协同显著性检测
协同显著性检测
协同分割
块聚类
显著性测度
测度融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种鲁棒的夜间图像显著性对象检测模型
来源期刊 软件学报 学科 工学
关键词 视觉显著性 对象检测 区域协方差 全局搜索 夜间图像
年,卷(期) 2018,(9) 所属期刊栏目 演化学习专题
研究方向 页码范围 2616-2631
页数 16页 分类号 TP391
字数 9129字 语种 中文
DOI 10.13328/j.cnki.jos.005396
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 穆楠 武汉科技大学计算机科学与技术学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (25)
节点文献
引证文献  (4)
同被引文献  (0)
二级引证文献  (2)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(4)
  • 参考文献(4)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(6)
  • 参考文献(6)
  • 二级参考文献(0)
2016(5)
  • 参考文献(5)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(4)
  • 引证文献(2)
  • 二级引证文献(2)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视觉显著性
对象检测
区域协方差
全局搜索
夜间图像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
总被引数(次)
226394
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导