基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对随机权神经网络(Random vector functional-link networks,RVFLNs)建模存在的过拟合和泛化能力差的问题,集成自编码(Autoencoder)和主成分分析(Principal component analysis,PCA)技术,提出一种新型的改进RVFLNs算法,即AE-P-RVFLNs算法,用于建立高炉多元铁水质量在线估计的NARX (Nonlinear autoregressive exogenous)模型.首先,为了尽可能挖掘实际复杂工业数据中的有用信息和充分揭示输入数据之间的内在关系,采用Autoencoder前馈随机网络技术训练建模输入数据,并将训练得到的输出权值作为后续RVFLNs的输入权值;然后,引入PCA技术对RVFLNs的高维隐层输出矩阵进行降维,避免隐层输出矩阵多重共线性问题,从而解决由于隐层节点过多导致模型过拟合的问题;最后,基于所提AE-P-RVFLNs算法建立某大型高炉多元铁水质量在线估计的NARX模型.工业实验和比较分析表明:采用本文算法建立的多元铁水质量在线估计模型可有效提高运算效率和估计精度,尤其是避免常规RVFLNs建模存在的过拟合问题.
推荐文章
高炉铁水质量鲁棒正则化随机权神经网络建模
RVFLNs
鲁棒建模
Gaussian分布加权M估计
高炉炼铁
铁水质量
基于自编码神经网络特征提取的回声状态网络研究及过程建模应用
自编码神经网络
回声状态网络
特征提取
软测量
过程建模
基于BP神经网络的高炉铁水硅含量预测模型研究
铁水硅含量
BP神经网络
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 集成自编码与PCA的高炉多元铁水质量随机权神经网络建模
来源期刊 自动化学报 学科
关键词 随机权神经网络 AE-P-RVFLNs 自编码 主成分分析 NARX建模 高炉炼铁 过拟合
年,卷(期) 2018,(10) 所属期刊栏目 论文与报告
研究方向 页码范围 1799-1811
页数 13页 分类号
字数 7517字 语种 中文
DOI 10.16383/j.aas.2018.c170299
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 柴天佑 东北大学流程工业综合自动化国家重点实验室 382 9006 43.0 78.0
2 周平 东北大学流程工业综合自动化国家重点实验室 38 462 12.0 20.0
3 张丽 东北大学流程工业综合自动化国家重点实验室 7 15 3.0 3.0
4 李温鹏 东北大学流程工业综合自动化国家重点实验室 2 4 1.0 2.0
5 戴鹏 东北大学流程工业综合自动化国家重点实验室 2 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (63)
共引文献  (37)
参考文献  (24)
节点文献
引证文献  (4)
同被引文献  (8)
二级引证文献  (1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(1)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(10)
  • 参考文献(1)
  • 二级参考文献(9)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(6)
  • 参考文献(2)
  • 二级参考文献(4)
2011(7)
  • 参考文献(2)
  • 二级参考文献(5)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(6)
  • 参考文献(3)
  • 二级参考文献(3)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
随机权神经网络
AE-P-RVFLNs
自编码
主成分分析
NARX建模
高炉炼铁
过拟合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导