基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
设计类问题在科学研究和工业领域无处不在.作为一种十分有效的全局优化算法,近年来,贝叶斯优化方法在设计类问题上被广泛应用.通过设计恰当的概率代理模型和采集函数,贝叶斯优化框架只需经过少数次目标函数评估即可获得理想解,非常适用于求解目标函数表达式未知、非凸、多峰和评估代价高昂的复杂优化问题.从方法论和应用领域两方面深入分析、讨论和展望了贝叶斯优化的研究现状、面临的问题和应用领域,期望为相关领域的研究者提供有益的借鉴和参考.
推荐文章
垃圾邮件过滤的贝叶斯方法综述
垃圾邮件
贝叶斯分类
向量空间模型
朴素贝叶斯分类
贝叶斯网络结构学习综述
贝叶斯网络
结构学习
数据
统计分析
搜索
基于改进贝叶斯优化算法的CNN超参数优化方法
贝叶斯优化
卷积神经网络
高斯过程
超参数优化
贝叶斯优化的RSF模型脑肿瘤图像分割新方法
脑肿瘤
MRI
RSF模型
贝叶斯估计
图像分割
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 贝叶斯优化方法和应用综述
来源期刊 软件学报 学科 工学
关键词 贝叶斯优化 全局优化算法 概率代理模型 采集函数 黑箱
年,卷(期) 2018,(10) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 3068-3090
页数 23页 分类号 TP18
字数 22699字 语种 中文
DOI 10.13328/j.cnki.jos.005607
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (24)
节点文献
引证文献  (29)
同被引文献  (80)
二级引证文献  (5)
1933(1)
  • 参考文献(1)
  • 二级参考文献(0)
1964(1)
  • 参考文献(1)
  • 二级参考文献(0)
1972(1)
  • 参考文献(1)
  • 二级参考文献(0)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(14)
  • 引证文献(14)
  • 二级引证文献(0)
2020(20)
  • 引证文献(15)
  • 二级引证文献(5)
研究主题发展历程
节点文献
贝叶斯优化
全局优化算法
概率代理模型
采集函数
黑箱
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导