基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
社交网络发展迅速,即时消息系统已成为人们日常生活中必不可少的沟通交流工具.在线群聊能使人们迅速交流生活、技术及工作等信息,但是由于群聊信息更新较快,大量的信息导致跟进群聊话题是困难的.传统的主题挖掘模型不能很好地适用于群聊文本的挖掘.通过对群聊文本的特征进行分析,提出一种基于GRU和LDA的群聊会话主题挖掘(GLB-GCTM,GRU and LDA Based Group Chat Topic Mining)模型,解决了传统主题模型不能解决的词语顺序问题.首先,假定每个文档有一个基于高斯分布的主题向量,然后根据GRU原理产生每个词的隐含状态,根据当前词的隐含状态的伯努利分布确定当前词是否为停用词,以决定所使用的语言模型.该方法使用笔者加入的10个QQ群最近3个月的群聊数据集进行试验验证,结合对比实验评估标准,该模型能够有效识别出群聊文本中的主题.
推荐文章
基于UR-LDA的微博主题挖掘
微博
主题挖掘
UR-LDA
吉布斯抽样
基于权重微博链的改进LDA微博主题模型
短文本
主题挖掘
微博链
潜在狄利克雷分布
perplexity
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GRU+LDA的群聊主题挖掘
来源期刊 计算机与现代化 学科 工学
关键词 主题挖掘 群聊文本 深度学习 GRU LDA
年,卷(期) 2018,(12) 所属期刊栏目 人工智能
研究方向 页码范围 72-76
页数 5页 分类号 TP274
字数 4180字 语种 中文
DOI 10.3969/j.issn.1006-2475.2018.12.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 汤鲲 5 7 2.0 2.0
5 陈思思 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (111)
共引文献  (66)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(8)
  • 参考文献(1)
  • 二级参考文献(7)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(13)
  • 参考文献(0)
  • 二级参考文献(13)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(11)
  • 参考文献(1)
  • 二级参考文献(10)
2015(24)
  • 参考文献(2)
  • 二级参考文献(22)
2016(8)
  • 参考文献(0)
  • 二级参考文献(8)
2017(7)
  • 参考文献(5)
  • 二级参考文献(2)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
主题挖掘
群聊文本
深度学习
GRU
LDA
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导