基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在基于图像集的流形降维问题中,许多算法的核心思想都是把一个高维的流形直接降到一个维数相对较低、同时具有的判别信息更加充分的流形上.投影度量学习(projection metric learning,简称PML)是一种Grassmann流形降维算法.该算法是基于投影度量,并且使用RCG(Riemannian conjugate gradient)算法优化目标函数,其在多个数据集上都取得了较好的实验结果,但是对于复杂的人脸数据集,如YTC其实验结果相对较差,只取得了66.69%的正确率.同时,RCG算法的时间效率较差.基于上述原因,提出了基于切空间判别学习的流形降维算法.该算法首先对于PML中的投影矩阵添加扰动,使其成为对称正定(symmetric positive definite,简称SPD)矩阵;然后,使用LEM(log-euclidean metric)将其映射到切空间中;最后,利用基于特征值分解的迭代优化算法构造判别函数,得到变换矩阵对提算法在多个标准数据集上进行了实验验证,并取得了较好的实验结果,从而验证了该算法的有效性.
推荐文章
一种基于流形学习的PCA-SLPP特征空间降维方法
降维
主成分分析
流形学习
有监督的局部保留投影
煤岩
分类
流形学习在三维人脸特征降维中的应用
三维人脸识别
特征降维
流形学习
基于特征子空间邻域的局部保持流形学习算法
正约束
特征子空间
局部保持
流形学习
一种基于局部和判别特性的降维算法
维数约简
局部保持投影
线性判别分析
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于切空间判别学习的流形降维算法
来源期刊 软件学报 学科 工学
关键词 Grassmann流形 降维 RCG 对称正定矩阵 LEM 特征值分解
年,卷(期) 2018,(12) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 3786-3798
页数 13页 分类号 TP181
字数 8602字 语种 中文
DOI 10.13328/j.cnki.jos.005392
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴小俊 江南大学物联网工程学院 170 1079 17.0 22.0
2 王锐 江南大学物联网工程学院 4 10 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (15)
节点文献
引证文献  (4)
同被引文献  (8)
二级引证文献  (1)
1967(1)
  • 参考文献(1)
  • 二级参考文献(0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
Grassmann流形
降维
RCG
对称正定矩阵
LEM
特征值分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
总被引数(次)
226394
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导