基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高时间序列预测方法的预测精度,提出了一种基于双神经网络通道的时间序列预测框架.双通道框架组合了卷积神经网络和循环神经网络,卷积神经网络通道利用卷积和池化操作提取出时间序列的深层特征,循环神经网络通道能够提取出长序列依赖特征.此外,针对循环神经网络通道,设计了基于注意力机制的改进,提高预测精度.在EEM2016能源价格预测比赛提供的数据集上进行了实验,实验结果表明所提双通道框架可以取得比单通道框架更高的预测精度.
推荐文章
基于神经网络的混沌时间序列预测
人工神经网络
混沌时间序列
Lyapunov指数
基于改进神经网络的GDP时间序列预测
BP神经网络
GDP预测
准确率
基于混沌时间序列和神经网络的网络流量预测方法
时间序列
相空间重构
神经网络
网络流量预测
基于聚类分析和神经网络的时间序列预测方法
聚类
时间序列
预测
径向基
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于双神经网络通道的时间序列预测框架
来源期刊 舰船电子工程 学科 工学
关键词 卷积神经网络 循环神经网络 双通道框架 时间序列预测 注意力机制
年,卷(期) 2018,(9) 所属期刊栏目 计算机与网络安全
研究方向 页码范围 84-89
页数 6页 分类号 TP183
字数 3921字 语种 中文
DOI 10.3969/j.issn.1672-9730.2018.09.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陆建峰 南京理工大学计算机科学与工程学院 77 1217 17.0 33.0
2 宋恺涛 南京理工大学计算机科学与工程学院 3 3 1.0 1.0
3 吴双双 南京理工大学计算机科学与工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (10)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(9)
  • 参考文献(4)
  • 二级参考文献(5)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
循环神经网络
双通道框架
时间序列预测
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
舰船电子工程
月刊
1672-9730
42-1427/U
大16开
湖北省武汉市
1981
chi
出版文献量(篇)
9053
总下载数(次)
18
总被引数(次)
27655
论文1v1指导