稀疏度自适应正则回溯匹配追踪算法(SAMP algorithm based on regularized backtracking,SAMP-RB)是一种有效的压缩感知重构算法,在原子选择阶段引入回溯的思想,提高了重构精度,减少了重构时间.但SAMP-RB算法重构时采用步长不变的思想,容易因步长设置不合理而导致过估计或欠估计的问题.针对该问题,为提高残差大时的逼近速度,及残差小时的逼近精度,提出抛物线函数步长选择方法,并将其引入SAMP-RB算法.理论分析与仿真结果表明,改进后的变步长正则回溯稀疏度自适应匹配追踪算法在提高重构精度的同时,重构时间降低了20%左右,因此验证了改进算法的有效性.