原文服务方: 计算机应用研究       
摘要:
显著性区域检测是指自动识别出图像中最感兴趣、最重要的区域,目前在目标识别、图像检索等领域应用广泛.基于图的流形排序的显著区域检测算法虽然能够准确高效地检测出一幅图像中的显著性区域,但该算法中使用的K正则图描述的各顶点的空间连接性的图的结构存在局限.为解决上述局限性,研究构造一个更一般的连通图,在显著目标较大或显著目标不连续的情况下,能够更准确地检测出显著性区域.通过在CSSD、SOD、ASD和SED2四个标准数据集上进行大量验证性实验,与六种现有的代表性方法相比,实验结果在PR曲线、F值、MAE等多个指标均表明改进算法有明显的提高,有效验证了算法的有效性.
推荐文章
视觉显著性检测综述
视觉显著性检测
RGB图像显著性检测
RGBD图像显著性检测
视频显著性检测
协同显著性检测
基于连通域的汉字切分技术研究
灰度图像
连通域
粘连字符切分
合并
基于视觉注意机制的彩色图像显著性区域提取
显著性区域提取
视觉注意机制
分水岭
区域化空间注意力模型
基于连通区域的传真图像版面分割与分类算法
传真图像
版面分析
连通区域
版面分割
文字区域
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于连通图的视觉显著区域检测研究
来源期刊 计算机应用研究 学科
关键词 显著性目标检测 流形排序 连通图
年,卷(期) 2018,(8) 所属期刊栏目 图形图像技术
研究方向 页码范围 2503-2505,2519
页数 4页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2018.08.066
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 汤进 安徽大学计算机科学与技术学院 83 407 11.0 15.0
2 肖云 安徽大学计算机科学与技术学院 11 61 4.0 7.0
3 陈新宇 安徽大学计算机科学与技术学院 1 1 1.0 1.0
4 张海涛 安徽大学计算机科学与技术学院 2 14 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (6)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(8)
  • 参考文献(2)
  • 二级参考文献(6)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
显著性目标检测
流形排序
连通图
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导