基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决图案织物缺陷检测时传统人工的误检率、漏检率较高的问题,提出一种基于局部二值模式(local binary pattern,LBP)和方向梯度直方图(histogram of oriented gradient,HOG)特征相结合的检测算法.首先,将织物图像分解为多个重复单元(repeat units,RUs),提取其LBP和HOG特征,并对特征降维;其次,根据标记每个RUs特征的类别和对应在织物图像上的位置训练支持向量机(SVM);最后,利用分类器判别RUs特征中有无缺陷,并定位出RUs在织物图像中的位置.实验结果表明,与灰度共生矩阵(GLCM)作为特征矩阵的方法相比,该算法对图案织物常见的6种缺陷图像可实现提高检测效率、缩短检测时间,获取准确位置的目的.
推荐文章
基于Gabor滤波器和HOG特征的织物疵点检测
织物疵点检测
Gabor滤波器
双边滤波
方向梯度直方图
基于MB-LBP和HOG的掌纹识别
掌纹识别
多块二值模式
梯度方向直方图
最近邻分类
绝对值距离
基于HOG—LBP特征提取的人脸识别研究
梯度方向直方图
局部二值模式
特征提取
人脸识别
基于OTSU分割和HOG特征的行人检测与跟踪方法
行人检测
HOG特征
隐马尔可夫模型
OTSU算法
鲁棒性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LBP和HOG特征的图案织物缺陷检测
来源期刊 电子测量与仪器学报 学科 工学
关键词 局部二值模式 方向梯度直方图 重复单元 支持向量机 缺陷检测
年,卷(期) 2018,(4) 所属期刊栏目 学术论文
研究方向 页码范围 95-102
页数 8页 分类号 TP751.1
字数 语种 中文
DOI 10.13382/j.jemi.2018.04.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李鹏飞 157 710 12.0 17.0
2 景军锋 143 578 12.0 16.0
3 苏泽斌 25 33 4.0 5.0
4 张缓缓 33 106 7.0 10.0
5 马浩 2 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (60)
共引文献  (48)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(2)
  • 参考文献(1)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(5)
  • 参考文献(1)
  • 二级参考文献(4)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
局部二值模式
方向梯度直方图
重复单元
支持向量机
缺陷检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量与仪器学报
月刊
1000-7105
11-2488/TN
大16开
北京市东城区北河沿大街79号
80-403
1987
chi
出版文献量(篇)
4663
总下载数(次)
23
总被引数(次)
44770
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导