基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在智能交通系统中要求交通标志识别具有良好的鲁棒性、实时性,并且实际交通环境中可能因路标模糊、光照强弱、尺度大小、复杂背景等因素的问题,导致交通标志识别准确率很低.针对上述问题,提出了利用深度学习方法设计卷积神经网络,并通过卷积和池采样的多层处理,结合目标检测方法中的RPN网络结构,以提取图像的候选区域,从而对候选区域进行特征提取,最后利用全连接网络实现对特征图进行回归处理,获取检测目标的位置及识别.实验结果表明,该方法能有效地提高检测精度和计算效率,降低错误率,对于光照、旋转等不良因素下交通标志检测具有较好的稳定性和准确性,有效地提高了交通标志识别效率,具有良好的泛化能力和适应性,且满足一定的实时性的要求.
推荐文章
应用深层卷积神经网络的交通标志识别
交通标志
识别
卷积神经网络
深度学习
基于卷积神经网络的实景交通标志识别
卷积神经网络
深度学习
交通标志识别
训练
基于优化的卷积神经网络在交通标志识别中的应用
卷积神经网络
非对称卷积
批量归一化
交通标志
梯度传输
分类精度
基于轻量型卷积神经网络的交通标志识别
卷积神经网络
交通标识
图像增强
深度可分离卷积
激活函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 应用卷积神经网络与RPN的交通标志识别
来源期刊 计算机工程与应用 学科 工学
关键词 交通标志检测 实时 区域生成网络(RPN) 智能交通
年,卷(期) 2018,(21) 所属期刊栏目 工程与应用
研究方向 页码范围 251-256,264
页数 7页 分类号 TN911.73-34|TP391.41
字数 5912字 语种 中文
DOI 10.3778/j.issn.1002-8331.1707-0355
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 卢剑彪 广东工业大学计算机学院 2 14 2.0 2.0
2 温捷文 广东工业大学计算机学院 3 37 3.0 3.0
3 李楚宏 广东工业大学计算机学院 2 14 2.0 2.0
4 凌伟林 广东工业大学计算机学院 2 28 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (14)
参考文献  (9)
节点文献
引证文献  (5)
同被引文献  (22)
二级引证文献  (0)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(3)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通标志检测
实时
区域生成网络(RPN)
智能交通
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导