基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对面部表情识别过程中获得的特征样本稀少的问题,提出了一种基于小数据集下贝叶斯网络(BN)建模的面部表情识别方法.首先提取面部表情图像的几何特征和HOG特征,经特征融合和归一化等处理构成动作单元(AU)标签样本集;其次提出了用于面部表情识别的BN结构,并将定性专家经验转化为BN条件概率之间的约束集合,随后引入凸优化最大化求解完成BN模型参数的估算;最后利用联合树推理算法识别出面部表情.实验结果表明:在小数据集条件下,与支持向量机(SVM)、Adaboost和卷积神经网络(CNN)等人脸表情分类方法相比,该方法能够取得更准确的面部表情识别结果.
推荐文章
基于贝叶斯网络的步态识别
生物特征识别
步态识别
贝叶斯网络
基于最小诊断集的贝叶斯网络诊断模型研究
贝叶斯网络
最小诊断集
故障诊断
诊断模型
基于面部结构的表情识别
人脸表情识别
判别响应图拟合
联合Haar-like特征
Boosting学习
基于参数学习贝叶斯网络的对敌空中目标融合识别
参数学习
目标识别
贝叶斯网络
数据融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小数据集下贝叶斯网络建模的面部表情识别
来源期刊 科学技术与工程 学科 工学
关键词 面部表情识别 活动单元 小数据集 贝叶斯网络建模
年,卷(期) 2018,(35) 所属期刊栏目 研究简报
研究方向 页码范围 179-183
页数 5页 分类号 TP301.6
字数 3206字 语种 中文
DOI 10.3969/j.issn.1671-1815.2018.35.030
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 肖秦琨 西安工业大学电子信息工程学院 36 224 9.0 12.0
2 郭文强 陕西科技大学电气与信息工程学院 45 214 7.0 12.0
3 高文强 陕西科技大学电气与信息工程学院 7 12 3.0 3.0
4 徐成 陕西科技大学电气与信息工程学院 1 3 1.0 1.0
5 李梦然 陕西科技大学电气与信息工程学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (11)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
面部表情识别
活动单元
小数据集
贝叶斯网络建模
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科学技术与工程
旬刊
1671-1815
11-4688/T
大16开
北京市海淀区学院南路86号
2-734
2001
chi
出版文献量(篇)
30642
总下载数(次)
83
总被引数(次)
113906
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导