作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
快速、准确分析脊髓损伤者卧床姿态,对预防褥疮等并发症有重大意义.本研究通过获取脊髓损伤者卧位时足底图像作为特征图像,引入卷积神经网络进行分类,结合历史数据分析患者单一体位局部受压时间,可以提示因长期卧床而导致的褥疮等并发症.
推荐文章
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于三维卷积神经网络的动作识别算法
卷积神经网络
三维卷积
人体姿态估计
动作识别
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的脊髓损伤者卧位姿态的识别算法研究
来源期刊 信息记录材料 学科 工学
关键词 卷积神经网络 识别算法 脊髓损伤 姿态识别
年,卷(期) 2018,(12) 所属期刊栏目 发现·综合
研究方向 页码范围 175-176
页数 2页 分类号 TP183
字数 2069字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴玉琳 6 10 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (2)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
识别算法
脊髓损伤
姿态识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息记录材料
月刊
1009-5624
13-1295/TQ
大16开
河北省保定市乐凯南大街6号
18-185
1978
chi
出版文献量(篇)
9919
总下载数(次)
46
论文1v1指导