基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
短时交通流量具有非线性、随机性等特点,如何准确地进行短时交通流量预测,是智能交通系统研究的一项关键内容.传统的预测模型不能实时反映短时交通流量变化特点,同时BP神经网络的交通流量预测存在收敛速度缓慢、易陷入局部极值、预测精度低等缺点.为了提高短时交通流量预测精度,提出了一种基于改进粒子群算法(IPSO)优化BP神经网络的复合预测模型,引入相对误差指标作为预测模型的评价指标,并利用实测的道路短时交通流数据对所构建的预测模型进行验证.结果 表明,所提出的预测模型在短时间内寻出全局最优解,具有较好的预测精度,提高了短时交通流量预测的准确性和可靠性.
推荐文章
基于PSO的BP神经网络-Markov船舶交通流量预测模型
船舶交通流量预测
BP神经网络
马尔科夫模型(Markov模型)
粒子群优化(PSO)
基于混沌粒子群算法的神经网络短时交通流预测
交通流量
预测
混沌粒子群
神经网络
基于粒子群的模糊神经网络交通流量预测
短时交通流
预测模型
模糊神经网络
粒子群算法
基于BP神经网络与残差分析的船舶交通流量预测
残差分析
BP神经网络
交通流
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于IPSO-BP神经网络的短时交通流量预测
来源期刊 四川理工学院学报(自然科学版) 学科 工学
关键词 智能交通 短时交通流量预测 BP神经网络 改进粒子群算法 预测精度
年,卷(期) 2019,(1) 所属期刊栏目 机械、电子及计算机科学
研究方向 页码范围 24-29
页数 6页 分类号 TB115
字数 3732字 语种 中文
DOI 10.11863/j.suse.2019.01.04
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王本有 皖西学院电子与信息工程学院 36 117 4.0 10.0
2 李石荣 皖西学院电子与信息工程学院 6 9 1.0 3.0
3 蔡翠翠 皖西学院电子与信息工程学院 13 9 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (156)
共引文献  (209)
参考文献  (16)
节点文献
引证文献  (1)
同被引文献  (3)
二级引证文献  (1)
1644(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(7)
  • 参考文献(0)
  • 二级参考文献(7)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(14)
  • 参考文献(1)
  • 二级参考文献(13)
2006(15)
  • 参考文献(0)
  • 二级参考文献(15)
2007(11)
  • 参考文献(0)
  • 二级参考文献(11)
2008(9)
  • 参考文献(1)
  • 二级参考文献(8)
2009(11)
  • 参考文献(0)
  • 二级参考文献(11)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(13)
  • 参考文献(4)
  • 二级参考文献(9)
2013(8)
  • 参考文献(1)
  • 二级参考文献(7)
2014(11)
  • 参考文献(1)
  • 二级参考文献(10)
2015(9)
  • 参考文献(3)
  • 二级参考文献(6)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(6)
  • 参考文献(4)
  • 二级参考文献(2)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
智能交通
短时交通流量预测
BP神经网络
改进粒子群算法
预测精度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川理工学院学报(自然科学版)
双月刊
1673-1549
51-1687/N
四川省自贡市汇兴路学苑街180号
chi
出版文献量(篇)
2774
总下载数(次)
3
总被引数(次)
12372
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导