基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对半导体器件在封装工艺中出现表面缺陷,及缺陷形态多样性和不可预测性而带来的模型适应性低等问题,提出了双向二维主成分分析和改进的卷积神经网络相结合的缺陷识别方法.首先为克服样本不均匀带来的识别精度低问题,对训练图像进行反射变换等操作构造虚拟样本,然后使用双向二维主成分分析法(Bilateral two-dimensional principal component analysis,Bi-2DPCA)对图像进行降维压缩,提取图像主要特征,再由改进的AlexNet网络进行缺陷识别分类,并提出正态随机采样层,将其加在AlexNet网络的卷积层后进行下采样,同时在全连接层中引入DropConnect来提高网络的泛化性能.实验表明,提出的算法较相关算法有较高的识别率,并在实际的表面贴装工程(Surface mount assembly,SMA)塑封图像数据上得到了验证,同时该算法具有较好的泛化性能.
推荐文章
一种新型指针仪表识别方法研究
指针式仪表
最大灰度相减
Hough变换
边缘提取
一种新型半导体制冷保温容器核心部件的设计
热电制冷
半导体制冷保温容器
核心部件
一种新型卷积神经网络植物叶片识别方法
DCGAN
数据扩充
图像识别
迁移学习
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种新型的半导体SMA缺陷识别方法
来源期刊 数据采集与处理 学科 工学
关键词 AlexNet 双向二维主成分分析法 DropConnect 正态随机池化
年,卷(期) 2019,(5) 所属期刊栏目
研究方向 页码范围 924-933
页数 10页 分类号 TP391.4
字数 4695字 语种 中文
DOI 10.16337/j.1004-9037.2019.05.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴锡生 江南大学物联网工程学院 81 560 14.0 18.0
2 胡佳美 江南大学物联网工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (32)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(11)
  • 参考文献(0)
  • 二级参考文献(11)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(13)
  • 参考文献(2)
  • 二级参考文献(11)
2014(9)
  • 参考文献(2)
  • 二级参考文献(7)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
AlexNet
双向二维主成分分析法
DropConnect
正态随机池化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
总被引数(次)
25271
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导