基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The Brain-Computer Interfaces(BCIs)had been proposed and used in therapeutics for decades.However,the need of time-consuming calibration phase and the lack of robustness,which are caused by little-labeled data,are restricting the advance and application of BCI,especially for the BCI based on motor imagery(MI).In this paper,we reviewed the recent development in the machine learning algorithm used in the MI-based BCI,which may provide potential solutions for addressing the issue.We classified these algorithms into two categories,namely,and enhancing the representation and expanding the training set.Specifically,these methods of enhancing the representation of features collected from few EEG trials are based on extracting features of multiple bands,regularization,and so on.The methods of expanding the training dataset include approaches of transfer learning(session to session transfer,subject to subject transfer)and generating artificial EEG data.The result of these techniques showed the resolution of the challenges to some extent.As a developing research area,the study of BCI algorithms in little-labeled data is increasingly requiring the advancement of human brain physiological structure research and more transfer learning algorithms research.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Survey on Machine Learning Algorithms in Little-Labeled Data for Motor Imagery-Based Brain-Computer Interfaces
来源期刊 信息隐藏与隐私保护杂志(英文) 学科 数学
关键词 Brain-Computer INTERFACE electroencephalography(EEG) MACHINE learning
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 11-21
页数 11页 分类号 O15
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Brain-Computer
INTERFACE
electroencephalography(EEG)
MACHINE
learning
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息隐藏与隐私保护杂志(英文)
季刊
2637-4234
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
15
总下载数(次)
2
总被引数(次)
0
论文1v1指导