基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于批量学习的恶意软件检测方法存在检测模型动态更新困难、运算存储开销大的问题,将改进的SOINN算法与有监督分类器有机结合,利用SOINN算法的增量学习特性赋予恶意软件检测模型动态更新能力,有效降低运算存储开销.首先对SOINN算法进行改进:在SOINN算法竞争学习周期内,根据全排列思想搜索所有样本输入次序下神经元的权重调节量,计算所有权重调节量的平均值作为神经元最终权重调节量,避免不同样本输入次序影响训练所得神经网络的稳定性,使所得神经网络更能反映原始数据本质特征,从而提高神经网络针对恶意软件检测的精度.然后采用非负矩阵分解和Z-score归一化对数据进行预处理,将恶意软件行为特征向量从高维高数量级转换至低维低数量级,在提高检测速度的同时有效降低高数量级维度对特征学习的不利影响,进一步提高检测准确性.实验结果表明,所提方法支持检测模型动态更新,对未知新样本的检测准确率显著高于传统检测方法,且运算存储开销更小.
推荐文章
基于主机行为特征的恶意软件检测方法
网络安全
恶意软件
僵尸网络
木马
基于SVM的敏感权限Android恶意软件检测方法
Android
敏感权限特征
恶意检测
SVM
基于对比权限模式的恶意软件检测方法
恶意软件
关联规则
组合分类器
权限模式
基于Android系统的手机恶意软件检测模型
Android系统
恶意软件
数据挖掘
敏感API
FP-growth算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进SOINN算法的恶意软件增量检测方法
来源期刊 网络与信息安全学报 学科 工学
关键词 SOINN算法 恶意软件检测 神经网络 增量学习 入侵检测
年,卷(期) 2019,(6) 所属期刊栏目 学术论文
研究方向 页码范围 21-30
页数 10页 分类号 TP393.08
字数 7002字 语种 中文
DOI 10.11959/j.issn.2096-109x.2019059
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张斌 48 230 8.0 11.0
5 董书琴 9 21 3.0 4.0
9 李立勋 4 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (101)
共引文献  (67)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1951(1)
  • 参考文献(0)
  • 二级参考文献(1)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(4)
  • 参考文献(0)
  • 二级参考文献(4)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(11)
  • 参考文献(1)
  • 二级参考文献(10)
2014(15)
  • 参考文献(1)
  • 二级参考文献(14)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(8)
  • 参考文献(3)
  • 二级参考文献(5)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SOINN算法
恶意软件检测
神经网络
增量学习
入侵检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络与信息安全学报
双月刊
2096-109X
10-1366/TP
16开
北京市丰台区成寿路11号邮电出版大厦8层
2015
chi
出版文献量(篇)
525
总下载数(次)
6
总被引数(次)
1380
论文1v1指导