基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Machine learning implementations are being done in a long way in science and technology and especially in medical stream. In this article, we are focusing on machine learning implementation on mall customers and based on their income and how they can invest in the purchase in a mall. This explains the features like Customer ID, gender, age, income, and spending score. There, we mentioned a score in purchasing the goods in the mall. In this scenario, we are implementing clustering mechanisms, and here we apply the dataset of mall customers which is a public dataset and create clusters related to the customer purchase. We implement machine learning models for the prediction of whether the visited customer will purchase any product or not. For this kind of works, we require many of the inputs like the features mentioned in the paper. To maintain the features, we require a model with machine learning capability. We are performing K-Means clustering and Hierarchical clustering mechanisms, and finally, we implement a confusion matrix to achieve and identify the highest accuracy in those two algorithms. Here, we consider machine learning mechanisms to predict the category of the customer about whether they can buy a product or not based on the independent variables. This work presents you a simple machine learning prediction model based on which we can predict the category of the customer based on clustering. Before clustering, we don’t know to what group they belong to. But after clustering, we can identify the category that data node belongs to. In this article, we are mentioning the process of determining the employee based information using machine learning clustering mechanisms.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Mechanism of accelerated dissolution of mineral crystals by cavitation erosion
Cavitation erosion
Mineral dissolution
Plastic deformation
Stepwave
Gibbs free energy
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Clustering Approach for Customer Billing Prediction in Mall: A Machine Learning Mechanism
来源期刊 电脑和通信(英文) 学科 医学
关键词 CLUSTERING Machine Learning CATEGORY Technology Hierarchical K-Means
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 55-66
页数 12页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CLUSTERING
Machine
Learning
CATEGORY
Technology
Hierarchical
K-Means
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导