基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对碾压混凝土现场压实程度的实时工艺评价需求,选择含湿率、碾压层表面应力横波波速、级配以及胶砂比为预测参数,构建了GA-BP神经网络压实度预测模型;结合现场应用实例,验证该方法实时预测评价的有效性.结果 表明:与BP神经网络模型比较,GA-BP神经网络模型不仅预测精度更高,而且偏差波动范围更小,稳定性好,能更准确有效地预测现场碾压层混凝土压实性;GA-BP神经网络模型对碾压混凝土压实度下限值更敏感,压实度处于93%~96%的样本点,模型预测值的平均误差仅为0.08%,最大误差仅为0.17%,预测精度很高.
推荐文章
基于增强GA-BP神经网络的软件错误定位方法
错误定位
GA-BP神经网络
正交实验设计
基于改进GA-BP神经网络的工厂污水监测系统研究
工厂污水
水质分类
改进GA
BP神经网络
污水监测
自适应算法
基于GA-BP神经网络的人脸检测
人脸检测
BP网络
遗传算法
GA-BP网络
基于GA-BP神经网络算法的马铃薯晚疫病预测模型
马铃薯晚疫病
遗传算法
BP神经网络
归一化处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GA-BP神经网络的碾压混凝土压实度实时评价方法
来源期刊 水利水电科技进展 学科 工学
关键词 碾压混凝土 压实度 实时检测 GA-BP神经网络 预测模型
年,卷(期) 2019,(3) 所属期刊栏目 工程技术
研究方向 页码范围 81-86
页数 6页 分类号 TV642.2|TV523
字数 5897字 语种 中文
DOI 10.3880/j.issn.1006-7647.2019.03.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 田正宏 河海大学水利水电学院 61 292 9.0 14.0
2 苏伟豪 河海大学水利水电学院 2 3 1.0 1.0
3 焦新宸 河海大学水利水电学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (43)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (7)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(7)
  • 参考文献(2)
  • 二级参考文献(5)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(5)
  • 参考文献(2)
  • 二级参考文献(3)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(3)
  • 参考文献(0)
  • 二级参考文献(3)
2020(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(3)
  • 参考文献(0)
  • 二级参考文献(3)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
碾压混凝土
压实度
实时检测
GA-BP神经网络
预测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水利水电科技进展
双月刊
1006-7647
32-1439/TV
大16开
南京西康路1号河海大学内
28-244
1981
chi
出版文献量(篇)
2984
总下载数(次)
4
总被引数(次)
30830
论文1v1指导