基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文将小波变换、模糊信息粒化、交叉验证以及支持向量回归等方法组合在一起,构建出基于小波变换的模糊信息粒化支持向量回归(WT-FIG-SVR)模型。首先,该模型通过小波变换对时间序列进行降噪处理,有效地改善了数据的不稳定和失真问题。然后,对模糊后的数据进行支持向量回归,并运用五折交叉验证方法隔点搜索最优参数,避免过度拟合的发生。由于数据处理中运用了模糊算法,新组合模型不仅可以对未来数据进行点估计,而且可以计算出未来的区间估计。通过对上证指数的实证分析,比较WT-FIG-SVR新模型与FIG-SVR原模型的预测效果,结果证明加入小波变换的新模型具有更强的预测能力,特别是在数据出现剧烈波动时,新模型对预测精度的提升更为明显。
推荐文章
多尺度小波核支持向量回归及其对丙烯浓度的估计与应用
多尺度小波核
量子聚类
支持向量数据描述
文化算法
模型选择
基于小波支持向量回归的电力系统负荷预测
电力负荷
小波支持向量回归
短期预测
混沌动力系统
基于数据域描述的模糊支持向量回归
支持向量机
数据域描述
模糊隶属度
建模
基于标准支持向量回归的阵列波束优化研究
支持向量机
标准支持向量回归
波束形成
阵列信号处理
优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波变换的模糊信息粒化支持向量回归模型及其应用研究
来源期刊 数量经济研究 学科 经济
关键词 WT-FIG-SVR模型 FIG-SVR模型 支持向量回归
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 127-143
页数 17页 分类号 F224.0
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李晓新 吉林大学商学院 1 0 0.0 0.0
2 张屹山 吉林财经大学统计学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (0)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(4)
  • 参考文献(3)
  • 二级参考文献(1)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
WT-FIG-SVR模型
FIG-SVR模型
支持向量回归
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数量经济研究
季刊
16开
北京市西城区华龙大厦B座1605室社会科
2010
chi
出版文献量(篇)
191
总下载数(次)
5
总被引数(次)
689
论文1v1指导